1
0
skaitiniai-metodai-labs/Lab3/part_2.py
2023-12-21 15:50:48 +02:00

112 lines
3.4 KiB
Python

import csv
import matplotlib.pyplot as plt
import numpy as np
def lerp(x, min_x, max_x):
return min_x + x * (max_x - min_x)
def remove_empty_years(emissions):
empty_emissions = []
for (year, emission) in emissions:
if emission == None:
empty_emissions.append((year, emission))
for empty_entry in empty_emissions:
emissions.remove(empty_entry)
def get_country_emissions(country: str):
emissions_path = "API_EN.ATM.GHGT.KT.CE_DS2_en_csv_v2_5995567.csv"
with open(emissions_path, "r", newline="", encoding="utf-8") as f:
# Skip first 4 lines
for _ in range(4):
f.readline()
reader = csv.reader(f, delimiter=",", quotechar='"')
header_row = next(reader)
years = list(int(header) for header in header_row[4:] if header != '')
for row in reader:
if row[0] == country:
emissions_str = row[4:4+len(years)]
emissions = list(float(emission) if emission != "" else None for emission in emissions_str)
emission_points = list(zip(years, emissions))
remove_empty_years(emission_points)
years = list(row[0] for row in emission_points)
emissions = list(row[1] for row in emission_points)
return years, emissions
def lagrange_dx_2d(
x,
x_prev, y_prev,
x_curr, y_curr,
x_next, y_next):
return (((x - x_curr) + (x - x_next)) / ((x_prev - x_curr) * (x_prev - x_next))) * y_prev + \
(((x - x_prev) + (x - x_next)) / ((x_curr - x_prev) * (x_curr - x_next))) * y_curr + \
(((x - x_prev) + (x - x_curr)) / ((x_next - x_prev) * (x_next - x_curr))) * y_next
def akima_derivatives(Xs: list[float], Ys: list[float]):
assert len(Xs) == len(Ys)
result = []
N = len(Xs)
for i in range(N):
pivot = i
if pivot == 0:
pivot += 1
elif pivot == N-1:
pivot -= 1
x = Xs[i]
x_prev = Xs[pivot-1]
y_prev = Ys[pivot-1]
x_curr = Xs[pivot ]
y_curr = Ys[pivot ]
x_next = Xs[pivot+1]
y_next = Ys[pivot+1]
result.append(lagrange_dx_2d(x, x_prev, y_prev, x_curr, y_curr, x_next, y_next))
return result
def draw_hermite_curve(X: list[float], Y: list[float], dY: list[float], scalar = 1):
assert len(X) == len(Y) == len(dY)
N = len(X)
plt.plot(X, Y, '--g', label="Originali")
plt.plot(X[0], Y[0], 'ro', label="Mazgas")
for i in range(N - 1):
plot_x = np.linspace(X[i], X[i+1], scalar)
plot_y = []
plt.plot(X[i+1], Y[i+1], 'ro')
d = X[i+1] - X[i]
for k in range(scalar):
s = plot_x[k] - X[i]
U1 = 1 - 3 * (s**2 / d**2) + 2 * (s**3 / d**3)
V1 = s - 2 * (s**2 / d) + (s**3 / d**2)
U2 = 3 * (s ** 2 / d **2) - 2 * (s**3 / d ** 3)
V2 = -1 * (s ** 2 / d) + (s ** 3 / d ** 2)
f = U1*Y[i ] + V1*dY[i ]
f += U2*Y[i+1] + V2*dY[i+1]
plot_y.append(f)
plt.plot(plot_x, plot_y, 'b', label="Interpoliuota" if i == 0 else None)
plt.draw()
plt.legend()
plt.show()
def main(country, interpolation):
years, emissions = get_country_emissions(country)
X = np.array(years)
Y = emissions
dY = akima_derivatives(years, emissions)
draw_hermite_curve(X, Y, dY, 2 + interpolation)
main(
country = "Zambia",
interpolation = 5
)