1
0

to hell with 3d models, simplify

This commit is contained in:
Rokas Puzonas 2024-01-21 11:26:29 +02:00
parent c4c28f3b7a
commit 3fb9ea38eb
13 changed files with 2 additions and 1083 deletions

3
.gitmodules vendored
View File

@ -1,6 +1,3 @@
[submodule "libs/zgltf"]
path = libs/zgltf
url = https://github.com/kooparse/zgltf.git
[submodule "libs/raylib/raylib"]
path = libs/raylib/raylib
url = git@github.com:raysan5/raylib.git

View File

@ -15,10 +15,6 @@ pub fn build(b: *std.Build) !void {
.target = target
});
exe.addModule("zgltf", b.createModule(.{
.source_file = .{ .path = "libs/zgltf/src/main.zig" },
}));
// Provide filenames of all files in 'src/ROMs' to program as options
{
var files = std.ArrayList([]const u8).init(b.allocator);
@ -39,20 +35,6 @@ pub fn build(b: *std.Build) !void {
raylib.addTo(b, exe, target, optimize, .{});
{
var build_models_step = b.step("models", "Export .blend files");
var build_models = b.addSystemCommand(&[_][]const u8{ "blender" });
build_models.addFileArg(.{ .path = "src/assets/models/emulator.blend" });
build_models.addArg("--background");
build_models.addArg("--python");
build_models.addFileArg(.{ .path = "src/assets/models/export.py" });
build_models.addArg("--");
build_models.addArg("src/assets/models/emulator.glb");
build_models_step.dependOn(&build_models.step);
exe.step.dependOn(build_models_step);
}
const run_cmd = b.addRunArtifact(exe);
const run_step = b.step("run", "Run chip8-zig");

@ -1 +0,0 @@
Subproject commit f9ed05023db75484333b6c7125a8c02a99cf3a14

Binary file not shown.

Before

Width:  |  Height:  |  Size: 504 KiB

Binary file not shown.

View File

@ -1,13 +0,0 @@
import bpy
import sys
argv = sys.argv
argv = argv[argv.index("--") + 1:]
assert len(argv) >= 1
output_path = argv[0]
assert output_path.endswith(".gltf") or output_path.endswith(".glb")
bpy.ops.export_scene.gltf(
filepath=output_path,
use_visible=True,
)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 311 B

View File

@ -1,523 +0,0 @@
const Self = @This();
const Gltf = @import("zgltf");
const rl = @import("raylib");
const std = @import("std");
const RaylibChip = @import("raylib-chip.zig");
const Light = @import("./light.zig");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
allocator: Allocator,
materials: []rl.Material,
models: std.ArrayList(rl.Model),
static_models: std.ArrayList(*rl.Model),
buttons: [16]*rl.Model,
power_switch: *rl.Model,
power_light_position: rl.Vector3,
bbox: rl.BoundingBox,
position: rl.Vector3,
button_state: *[16]bool,
powered: *bool,
fn getExtensionByMimeType(mime_type: []const u8) ?[:0]const u8 {
if (std.mem.eql(u8, mime_type, "image/png")) {
return ".png\x00";
} else if (std.mem.eql(u8, mime_type, "image/jpg")) {
return ".jpg\x00";
} else {
return null;
}
}
fn loadGltfImage(image: Gltf.Image) !rl.Image {
assert(image.uri == null);
assert(image.data != null);
assert(image.mime_type != null);
const image_data = image.data.?;
const mime_type = image.mime_type.?;
const file_type = getExtensionByMimeType(mime_type);
assert(file_type != null);
const rl_image = rl.LoadImageFromMemory(file_type.?, @ptrCast(image_data.ptr), @intCast(image_data.len));
if (@as(?*anyopaque, @ptrCast(rl_image.data)) == null) {
return error.Failed;
}
return rl_image;
}
fn loadGltfMaterial(data: Gltf.Data, material: Gltf.Material) !rl.Material {
var rl_material = rl.LoadMaterialDefault();
errdefer rl.UnloadMaterial(rl_material);
var albedo_map: *rl.MaterialMap = &rl_material.maps.?[@intFromEnum(rl.MaterialMapIndex.MATERIAL_MAP_ALBEDO)];
if (material.metallic_roughness.base_color_texture) |base_color_texture| {
const texture = data.textures.items[base_color_texture.index];
const image = data.images.items[texture.source.?];
const rl_image = try loadGltfImage(image);
defer rl.UnloadImage(rl_image);
albedo_map.texture = rl.LoadTextureFromImage(rl_image);
}
albedo_map.color.r = @intFromFloat(material.metallic_roughness.base_color_factor[0]*255);
albedo_map.color.g = @intFromFloat(material.metallic_roughness.base_color_factor[1]*255);
albedo_map.color.b = @intFromFloat(material.metallic_roughness.base_color_factor[2]*255);
albedo_map.color.a = @intFromFloat(material.metallic_roughness.base_color_factor[3]*255);
return rl_material;
}
fn loadGltfPrimitive(gltf: Gltf, primitive: Gltf.Primitive) !rl.Mesh {
var allocator = std.heap.c_allocator;
assert(primitive.mode == .triangles);
var rl_mesh = std.mem.zeroes(rl.Mesh);
errdefer rl.UnloadMesh(rl_mesh);
var bin = gltf.glb_binary.?;
var f32_buffer = std.ArrayList(f32).init(allocator);
defer f32_buffer.deinit();
for (primitive.attributes.items) |attribute| {
switch (attribute) {
.position => |accessor_index| {
const accessor = gltf.data.accessors.items[accessor_index];
assert(accessor.component_type == .float);
assert(accessor.type == .vec3);
f32_buffer.clearAndFree();
gltf.getDataFromBufferView(f32, &f32_buffer, accessor, bin);
var vertices = try allocator.dupe(f32, f32_buffer.items);
rl_mesh.vertexCount = @intCast(accessor.count);
rl_mesh.vertices = @ptrCast(vertices);
},
.normal => |accessor_index| {
const accessor = gltf.data.accessors.items[accessor_index];
assert(accessor.component_type == .float);
assert(accessor.type == .vec3);
f32_buffer.clearRetainingCapacity();
gltf.getDataFromBufferView(f32, &f32_buffer, accessor, bin);
var normals = try allocator.dupe(f32, f32_buffer.items);
rl_mesh.normals = @ptrCast(normals);
},
.tangent => |accessor_index| {
const accessor = gltf.data.accessors.items[accessor_index];
assert(accessor.component_type == .float);
assert(accessor.type == .vec4);
f32_buffer.clearRetainingCapacity();
gltf.getDataFromBufferView(f32, &f32_buffer, accessor, bin);
var tangents = try allocator.dupe(f32, f32_buffer.items);
rl_mesh.tangents = @ptrCast(tangents);
},
.texcoord => |accessor_index| {
const accessor = gltf.data.accessors.items[accessor_index];
assert(accessor.component_type == .float);
assert(accessor.type == .vec2);
f32_buffer.clearRetainingCapacity();
gltf.getDataFromBufferView(f32, &f32_buffer, accessor, bin);
var texcoords = try allocator.dupe(f32, f32_buffer.items);
rl_mesh.texcoords = @ptrCast(texcoords);
},
else => {}
}
}
if (primitive.indices) |accessor_index| {
const accessor = gltf.data.accessors.items[accessor_index];
rl_mesh.triangleCount = @divExact(accessor.count, 3);
const accessor_count: usize = @intCast(accessor.count);
var indices = try allocator.alloc(u16, accessor_count);
rl_mesh.indices = @ptrCast(indices);
if (accessor.component_type == Gltf.ComponentType.unsigned_short) {
var u16_buffer = std.ArrayList(u16).init(allocator);
defer u16_buffer.deinit();
gltf.getDataFromBufferView(u16, &u16_buffer, accessor, bin);
@memcpy(indices, u16_buffer.items);
} else if (accessor.component_type == Gltf.ComponentType.unsigned_integer) {
var u32_buffer = std.ArrayList(u32).init(allocator);
defer u32_buffer.deinit();
gltf.getDataFromBufferView(u32, &u32_buffer, accessor, bin);
for (0..accessor_count) |i| {
indices[i] = @truncate(u32_buffer.items[i]);
}
rl.TraceLog(@intFromEnum(rl.TraceLogLevel.LOG_WARNING), "MODEL: Indices data converted from u32 to u16, possible loss of data");
} else {
@panic("Unknown GLTF primitives indices component type. Use u16 or u32");
}
} else {
rl_mesh.triangleCount = @divExact(rl_mesh.vertexCount, 3);
}
rl.UploadMesh(@ptrCast(&rl_mesh), false);
return rl_mesh;
}
fn loadGltfMesh(materials: []rl.Material, gltf: Gltf, node: Gltf.Node) !rl.Model {
const allocator = std.heap.c_allocator;
const transform = Gltf.getGlobalTransform(&gltf.data, node);
var model = std.mem.zeroes(rl.Model);
errdefer rl.UnloadModel(model);
model.transform = rl.Matrix{
.m0 = transform[0][0],
.m4 = transform[1][0],
.m8 = transform[2][0],
.m12 = transform[3][0],
.m1 = transform[0][1],
.m5 = transform[1][1],
.m9 = transform[2][1],
.m13 = transform[3][1],
.m2 = transform[0][2],
.m6 = transform[1][2],
.m10 = transform[2][2],
.m14 = transform[3][2],
.m3 = transform[0][3],
.m7 = transform[1][3],
.m11 = transform[2][3],
.m15 = transform[3][3]
};
if (node.mesh) |mesh_idx| {
const mesh = gltf.data.meshes.items[mesh_idx];
const primitives: []Gltf.Primitive = mesh.primitives.items;
var meshes = try allocator.alloc(rl.Mesh, primitives.len);
model.meshCount = @intCast(primitives.len);
model.meshes = @ptrCast(meshes.ptr);
var mesh_material = try allocator.alloc(i32, primitives.len);
model.meshMaterial = @ptrCast(mesh_material.ptr);
@memset(mesh_material, 0);
var used_material_ids = try allocator.alloc(usize, materials.len);
var used_materials_count: usize = 0;
defer allocator.free(used_material_ids);
for (0.., primitives) |j, primitive| {
meshes[j] = try loadGltfPrimitive(gltf, primitive);
var mtl: usize = 0;
if (primitive.material) |material| {
mtl = material + 1;
}
var mtl_index = std.mem.indexOfScalar(usize, used_material_ids[0..used_materials_count], mtl);
if (mtl_index == null) {
mtl_index = used_materials_count;
used_material_ids[used_materials_count] = mtl;
used_materials_count += 1;
}
mesh_material[j] = @intCast(mtl_index.?);
}
var used_materials = try allocator.alloc(rl.Material, used_materials_count+1);
model.materials = @ptrCast(used_materials);
model.materialCount = 0;
for (0..used_materials_count) |i| {
used_materials[i] = materials[used_material_ids[i]];
const max_material_maps = 12;
const maps = try allocator.dupe(rl.MaterialMap, used_materials[i].maps.?[0..max_material_maps]);
used_materials[i].maps = @ptrCast(maps);
model.materialCount += 1;
}
}
return model;
}
pub fn init(allocator: Allocator, powered: *bool, button_state: *[16]bool, screen_texture: rl.RenderTexture2D) !Self {
var gltf = Gltf.init(allocator);
defer gltf.deinit();
try gltf.parse(@embedFile("assets/models/emulator.glb"));
const scene = gltf.data.scenes.items[gltf.data.scene.?];
const scene_nodes: std.ArrayList(Gltf.Index) = scene.nodes.?;
const material_count: usize = @intCast(gltf.data.materials.items.len);
var materials = try allocator.alloc(rl.Material, material_count+1);
@memset(materials, std.mem.zeroes(rl.Material));
errdefer allocator.free(materials);
materials[0] = rl.LoadMaterialDefault();
errdefer {
for (materials) |mtl| {
rl.UnloadMaterial(mtl);
}
}
for (0..material_count, gltf.data.materials.items) |i, material| {
materials[i+1] = try loadGltfMaterial(gltf.data, material);
}
var models = try std.ArrayList(rl.Model).initCapacity(allocator, scene_nodes.items.len);
errdefer models.deinit();
errdefer {
for (models.items) |model| {
rl.UnloadModel(model);
}
}
var static_models = std.ArrayList(*rl.Model).init(allocator);
errdefer static_models.deinit();
var buttons: [16]*rl.Model = undefined;
var power_switch: *rl.Model = undefined;
var power_light: ?*rl.Model = null;
for (scene_nodes.items) |node_index| {
const node = gltf.data.nodes.items[node_index];
if (node.mesh == null) continue;
models.appendAssumeCapacity(try loadGltfMesh(materials, gltf, node));
var model: *rl.Model = &models.items[models.items.len-1];
const name = node.name;
if (std.mem.eql(u8, name, "Power switch")) {
power_switch = model;
} else if (std.mem.startsWith(u8, name, "Buttons ")) {
var space = std.mem.indexOfScalar(u8, name, ' ').?;
const button_idx = try std.fmt.parseInt(usize, name[space+1..], 16);
buttons[button_idx] = model;
} else {
try static_models.append(model);
}
if (std.mem.eql(u8, name, "Screen")) {
const screen_material = &model.materials.?[0];
rl.SetMaterialTexture(@ptrCast(screen_material), rl.MATERIAL_MAP_DIFFUSE, screen_texture.texture);
} else if (std.mem.eql(u8, name, "Power indicator")) {
power_light = model;
}
}
var power_light_position = rl.Vector3.zero();
if (power_light) |model| {
power_light_position = matrixGetTranslation(model.transform);
}
return Self{
.allocator = allocator,
.materials = materials,
.static_models = static_models,
.models = models,
.buttons = buttons,
.power_switch = power_switch,
.powered = powered,
.button_state = button_state,
.power_light_position = power_light_position,
.bbox = rl.GetModelBoundingBox(static_models.items[0].*),
.position = rl.Vector3{ .x = 0, .y = 0, .z = 0 },
};
}
pub fn setShader(self: *Self, shader: rl.Shader) void {
for (self.models.items) |*model| {
if (model.materials == null) continue;
for (0..@intCast(model.materialCount)) |i| {
model.materials.?[i].shader = shader;
}
}
}
pub fn deinit(self: *Self) void {
for (self.models.items) |model| {
rl.UnloadModel(model);
}
for (self.materials) |mtl| {
rl.UnloadMaterial(mtl);
}
self.allocator.free(self.materials);
self.static_models.deinit();
self.models.deinit();
}
fn getRayCollisionModel(ray: rl.Ray, model: rl.Model, position: rl.Vector3) rl.RayCollision {
var closest_hit_info = std.mem.zeroes(rl.RayCollision);
const transform = rl.MatrixMultiply(model.transform, rl.MatrixTranslate(position.x, position.y, position.z));
for (0..@intCast(model.meshCount)) |i| {
if (model.meshes == null) break;
const mesh = model.meshes.?[i];
const hit_info = rl.GetRayCollisionMesh(ray, mesh, transform);
if (!hit_info.hit) continue;
if ((!closest_hit_info.hit) or (closest_hit_info.distance > hit_info.distance)) {
closest_hit_info = hit_info;
}
}
return closest_hit_info;
}
const ModelCollision = struct { collision: rl.RayCollision, model: *rl.Model };
fn getRayCollisionModels(ray: rl.Ray, models: []rl.Model, position: rl.Vector3) ?ModelCollision {
var closest_hit_info: ?rl.RayCollision = null;
var closest_model: ?*rl.Model = null;
for (models) |*model| {
const hit_info = getRayCollisionModel(ray, model.*, position);
if (!hit_info.hit) continue;
if ((closest_hit_info == null) or (closest_hit_info.?.distance > hit_info.distance)) {
closest_hit_info = hit_info;
closest_model = model;
}
}
if (closest_hit_info == null) {
return null;
}
return ModelCollision{
.collision = closest_hit_info.?,
.model = closest_model.?
};
}
pub fn isOverPowerSwitch(self: *const Self, ray: rl.Ray) bool {
const collision = getRayCollisionModels(ray, self.models.items, self.position);
if (collision) |c| {
return c.model == self.power_switch;
}
return false;
}
fn matrixGetTranslation(mat: rl.Matrix) rl.Vector3 {
return rl.Vector3{
.x = mat.m12,
.y = mat.m13,
.z = mat.m14,
};
}
fn matrixGetScale(mat: rl.Matrix) rl.Vector3 {
return rl.Vector3{
.x = rl.Vector3Length(rl.Vector3{ .x = mat.m0, .y = mat.m1, .z = mat.m2 }),
.y = rl.Vector3Length(rl.Vector3{ .x = mat.m4, .y = mat.m5, .z = mat.m6 }),
.z = rl.Vector3Length(rl.Vector3{ .x = mat.m8, .y = mat.m9, .z = mat.m10 }),
};
}
// https://stackoverflow.com/a/64336115
fn matrixGetRotation(mat: rl.Matrix) rl.Vector3 {
const scale = matrixGetScale(mat);
const R11 = mat.m0 / scale.x;
const R12 = mat.m1 / scale.x;
const R13 = mat.m2 / scale.x;
const R21 = mat.m4 / scale.y;
// const R22 = mat.m5 / scale.y;
// const R23 = mat.m6 / scale.y;
const R31 = mat.m8 / scale.z;
const R32 = mat.m9 / scale.z;
const R33 = mat.m10 / scale.z;
const asin = std.math.asin;
const cos = std.math.cos;
const atan2 = std.math.atan2;
const pi = rl.PI;
var roll: f32 = undefined;
var pitch: f32 = undefined;
var yaw: f32 = undefined;
if (R31 != 1 and R31 != -1) {
const pitch_1 = -1 * asin(R31);
// const pitch_2 = pi - pitch_1;
const roll_1 = atan2(f32, R32 / cos(pitch_1), R33 / cos(pitch_1));
// const roll_2 = atan2( R32 / cos(pitch_2) , R33 / cos(pitch_2));
const yaw_1 = atan2(f32, R21 / cos(pitch_1), R11 / cos(pitch_1));
// const yaw_2 = atan2( R21 / cos(pitch_2) , R11 / cos(pitch_2));
// IMPORTANT NOTE here, there is more than one solution but we choose the first for this case for simplicity !
// You can insert your own domain logic here on how to handle both solutions appropriately (see the reference publication link for more info).
pitch = pitch_1;
roll = roll_1;
yaw = yaw_1;
} else {
yaw = 0; // anything (we default this to zero)
if (R31 == -1) {
pitch = pi / 2;
roll = yaw + atan2(f32, R12, R13);
} else {
pitch = -pi / 2;
roll = -1*yaw + atan2(f32, -1*R12, -1*R13);
}
}
// convert from radians to degrees
roll = roll * rl.RAD2DEG;
pitch = pitch * rl.RAD2DEG;
yaw = yaw * rl.RAD2DEG;
return rl.Vector3{
.x = roll,
.y = pitch,
.z = yaw,
};
}
pub fn draw(self: *Self) void {
for (self.buttons, 0..) |button, i| {
var position = self.position;
if (self.button_state[i]) {
position.z += 0.035;
}
rl.DrawModel(button.*, position, 1.0, rl.WHITE);
}
for (self.static_models.items) |model| {
rl.DrawModel(model.*, self.position, 1.0, rl.WHITE);
}
{ // Power switch
const on_angle: f32 = 45;
const off_angle: f32 = -45;
const target_angle = if (self.powered.*) on_angle else off_angle;
var transform = self.power_switch.transform;
const rotation = matrixGetRotation(transform);
const dt = rl.GetFrameTime();
const delta_angle = rotation.z - target_angle;
transform = rl.MatrixMultiply(rl.MatrixRotateZ((delta_angle * dt * 0.2)), transform);
self.power_switch.transform = transform;
rl.DrawModel(self.power_switch.*, self.position, 1.0, rl.WHITE);
}
}
pub fn get_power_light_position(self: *Self) rl.Vector3 {
return self.power_light_position.add(self.position);
}
pub fn get_power_light_color(self: *Self) rl.Color {
_ = self;
return rl.GREEN;
}

View File

@ -1,88 +0,0 @@
const Self = @This();
const rl = @import("raylib");
const std = @import("std");
pub const LightType = enum(i32) {
DIRECTIONAL = 0,
POINT = 1,
};
shader: rl.Shader,
enabledLoc: i32,
typeLoc: i32,
positionLoc: i32,
targetLoc: i32,
colorLoc: i32,
intensityLoc: i32,
fn getLightShaderLocation(shader: rl.Shader, idx: usize, comptime name: []const u8) i32 {
var buf: [128]u8 = undefined;
var fba = std.heap.FixedBufferAllocator.init(&buf);
const prop_name = std.fmt.allocPrintZ(fba.allocator(), "lights[{d}]." ++ name, .{idx}) catch unreachable;
return rl.GetShaderLocation(shader, prop_name);
}
pub fn init(shader: rl.Shader, idx: usize) Self {
return Self{
.shader = shader,
.enabledLoc = getLightShaderLocation(shader, idx, "enabled"),
.typeLoc = getLightShaderLocation(shader, idx, "type"),
.positionLoc = getLightShaderLocation(shader, idx, "position"),
.targetLoc = getLightShaderLocation(shader, idx, "target"),
.colorLoc = getLightShaderLocation(shader, idx, "color"),
.intensityLoc = getLightShaderLocation(shader, idx, "intensity"),
};
}
pub fn set_directional(self: *const Self, color: rl.Color, position: rl.Vector3, intensity: f32, target: rl.Vector3) void {
self.set_type(.DIRECTIONAL);
self.set_intensity(intensity);
self.set_enabled(true);
self.set_position(position);
self.set_color(color);
self.set_target(target);
}
pub fn set_point(self: *const Self, color: rl.Color, position: rl.Vector3, intensity: f32) void {
self.set_type(.POINT);
self.set_intensity(intensity);
self.set_enabled(true);
self.set_color(color);
self.set_position(position);
}
pub fn set_enabled(self: *const Self, enabled: bool) void {
const enabled_i32: i32 = @intFromBool(enabled);
rl.SetShaderValue(self.shader, self.enabledLoc, &enabled_i32, .SHADER_UNIFORM_INT);
}
pub fn set_type(self: *const Self, light_type: LightType) void {
const light_type_i32: i32 = @intFromEnum(light_type);
rl.SetShaderValue(self.shader, self.typeLoc, &light_type_i32, .SHADER_UNIFORM_INT);
}
pub fn set_intensity(self: *const Self, intensity: f32) void {
rl.SetShaderValue(self.shader, self.intensityLoc, &intensity, .SHADER_UNIFORM_FLOAT);
}
pub fn set_position(self: *const Self, pos: rl.Vector3) void {
const position = [3]f32{ pos.x, pos.y, pos.z };
rl.SetShaderValue(self.shader, self.positionLoc, &position, .SHADER_UNIFORM_VEC3);
}
pub fn set_target(self: *const Self, target: rl.Vector3) void {
const target_f32 = [3]f32{ target.x, target.y, target.z };
rl.SetShaderValue(self.shader, self.targetLoc, &target_f32, .SHADER_UNIFORM_VEC3);
}
pub fn set_color(self: *const Self, color: rl.Color) void {
const color_f32 = [4]f32{
@as(f32, @floatFromInt(color.r)) / 255.0,
@as(f32, @floatFromInt(color.g)) / 255.0,
@as(f32, @floatFromInt(color.b)) / 255.0,
@as(f32, @floatFromInt(color.a)) / 255.0,
};
rl.SetShaderValue(self.shader, self.colorLoc, &color_f32, .SHADER_UNIFORM_VEC4);
}

View File

@ -1,11 +1,7 @@
const Self = @This();
const rl = @import("raylib");
const std = @import("std");
const Gltf = @import("zgltf");
const EmulatorModel = @import("./emulator-model.zig");
const ROM = @import("./roms.zig").ROM;
const Light = @import("./light.zig");
const ShaderCode = @import("./shader-code.zig");
const ChipContext = @import("chip.zig");
const RaylibChip = @import("raylib-chip.zig");
@ -14,26 +10,12 @@ const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const StringList = std.ArrayList([]const u8);
const max_lights: u32 = 2;
allocator: Allocator,
emulator: EmulatorModel,
camera_turn_vel: rl.Vector3 = rl.Vector3{ .x = 0, .y = 0, .z = 0 },
camera_target_orientation: ?rl.Vector3 = null,
previous_click_time: f64 = 0.0,
shader: rl.Shader,
lights: [max_lights]Light,
powered: *bool,
chip: *ChipContext,
raylib_chip: *RaylibChip,
chip_sound: rl.Sound,
screen_texture: rl.RenderTexture2D,
rom: ?ROM = null,
camera: rl.Camera3D,
pub fn genSinWave(wave: *rl.Wave, frequency: f32) void {
assert(wave.sampleSize == 16); // Only 16 bits are supported
@ -50,83 +32,7 @@ pub fn genSinWave(wave: *rl.Wave, frequency: f32) void {
}
}
fn getCameraProjection(camera: *const rl.Camera3D) rl.Matrix {
const screen_width: f32 = @floatFromInt(rl.GetScreenWidth());
const screen_height: f32 = @floatFromInt(rl.GetScreenHeight());
if (camera.projection == .CAMERA_PERSPECTIVE) {
return rl.MatrixPerspective(camera.fovy*rl.DEG2RAD, screen_width/screen_height, rl.RL_CULL_DISTANCE_NEAR, rl.RL_CULL_DISTANCE_FAR);
} else if (camera.projection == .CAMERA_ORTHOGRAPHIC) {
const aspect = screen_width/screen_height;
const top = camera.fovy/2.0;
const right = top*aspect;
return rl.MatrixOrtho(-right, right, -top, top, rl.RL_CULL_DISTANCE_NEAR, rl.RL_CULL_DISTANCE_FAR);
} else {
unreachable;
}
}
fn getScreenDirectionFromCamera(mat_proj: *const rl.Matrix, mat_view: *const rl.Matrix, point: rl.Vector2) rl.Vector3 {
const screen_width: f32 = @floatFromInt(rl.GetScreenWidth());
const screen_height: f32 = @floatFromInt(rl.GetScreenHeight());
const ndc_x = (2.0*point.x) / screen_width - 1.0;
const ndc_y = 1.0 - (2.0*point.y) / screen_height;
var near_point = rl.Vector3Unproject(.{ .x = ndc_x, .y = ndc_y, .z = 0.0 }, mat_proj.*, mat_view.*);
var far_point = rl.Vector3Unproject(.{ .x = ndc_x, .y = ndc_y, .z = 1.0 }, mat_proj.*, mat_view.*);
return rl.Vector3Subtract(far_point, near_point).normalize();
}
fn getPrefferedDistanceToBox(camera: *const rl.Camera3D, box: rl.BoundingBox) f32 {
const screen_width: f32 = @floatFromInt(rl.GetScreenWidth());
const screen_height: f32 = @floatFromInt(rl.GetScreenHeight());
const margin = @min(screen_width, screen_height)*0.1;
const box_size = box.max.sub(box.min);
const max_model_scale = @min((screen_width-2*margin)/box_size.x, (screen_height-2*margin)/box_size.y);
// const model_screen_width = box_size.x * max_model_scale;
const model_screen_height = box_size.y * max_model_scale;
const mat_proj = getCameraProjection(camera);
const mat_view = rl.MatrixIdentity(); // rl.MatrixLookAt(camera.position, camera.target, camera.up);
const screen_middle = rl.Vector2{ .x = screen_width/2, .y = screen_height/2 };
const box_top_middle = screen_middle.add(.{ .y = -model_screen_height/2 });
const middle_dir = getScreenDirectionFromCamera(&mat_proj, &mat_view, screen_middle);
const top_middle_dir = getScreenDirectionFromCamera(&mat_proj, &mat_view, box_top_middle);
const angle = top_middle_dir.angleBetween(middle_dir);
const distance = 1/@tan(angle) * (box_size.y/2) + box_size.z/4;
return distance;
}
pub fn init(allocator: Allocator) !Self {
const shader_code = try ShaderCode.init(allocator, max_lights);
defer shader_code.deinit();
const shader = rl.LoadShaderFromMemory(shader_code.vertex, shader_code.fragment);
errdefer rl.UnloadShader(shader);
if (shader.id == rl.rlGetShaderIdDefault()) {
return error.CompileShader;
}
shader.locs.?[@intFromEnum(rl.ShaderLocationIndex.SHADER_LOC_VECTOR_VIEW)] = rl.GetShaderLocation(shader, "viewPos");
const ambientLoc = rl.GetShaderLocation(shader, "ambient");
rl.SetShaderValue(shader, ambientLoc, &[4]f32{ 0.6, 0.6, 1, 1.0 }, .SHADER_UNIFORM_VEC4);
var lights: [max_lights]Light = undefined;
for (0..max_lights) |i| {
lights[i] = Light.init(shader, i);
}
lights[0].set_directional(rl.WHITE, rl.Vector3.new(0.2, 0, -0.2), 1, rl.Vector3.zero());
lights[1].set_directional(rl.WHITE, rl.Vector3.new(0.2, 0, 0.2), 1, rl.Vector3.zero());
var chip = try allocator.create(ChipContext);
chip.* = try ChipContext.init(allocator);
@ -148,45 +54,19 @@ pub fn init(allocator: Allocator) !Self {
var raylib_chip = try allocator.create(RaylibChip);
raylib_chip.* = RaylibChip.init(chip, chip_sound);
const screen_texture = rl.LoadRenderTexture(raylib_chip.chip.display_width, raylib_chip.chip.display_height);
errdefer rl.UnloadRenderTexture(screen_texture);
const powered = try allocator.create(bool);
errdefer allocator.destroy(powered);
var emulator = try EmulatorModel.init(allocator, powered, &chip.input, screen_texture);
errdefer emulator.deinit();
emulator.setShader(shader);
return Self {
.allocator = allocator,
.emulator = emulator,
.shader = shader,
.lights = lights,
.chip = chip,
.raylib_chip = raylib_chip,
.chip_sound = chip_sound,
.screen_texture = screen_texture,
.powered = powered,
.camera = rl.Camera3D{
.position = rl.Vector3.new(0, 0, -10),
.target = rl.Vector3.new(0.0, 0.0, 0.0),
.up = rl.Vector3.new(0.0, 1.0, 0.0),
.fovy = 45.0,
.projection = rl.CameraProjection.CAMERA_PERSPECTIVE,
},
};
}
pub fn deinit(self: *Self) void {
self.emulator.deinit();
rl.UnloadShader(self.shader);
rl.UnloadSound(self.chip_sound);
rl.UnloadRenderTexture(self.screen_texture);
self.chip.deinit();
self.allocator.destroy(self.powered);
self.allocator.destroy(self.raylib_chip);
self.allocator.destroy(self.chip);
}
@ -197,182 +77,12 @@ pub fn set_rom(self: *Self, rom: ROM) void {
self.chip.set_memory(0x200, rom.data);
}
pub fn turn_on(self: *Self) void {
self.powered.* = true;
}
pub fn turn_off(self: *Self) void {
self.powered.* = false;
self.chip.reset();
if (self.rom) |rom| {
self.chip.set_memory(0x200, rom.data);
}
}
pub fn toggle_power(self: *Self) void {
if (self.powered.*) {
self.turn_off();
} else {
self.turn_on();
}
}
fn updateCamera(self: *Self, dt: f32) void {
const mouse_delta = rl.GetMouseDelta();
const camera = &self.camera;
const emulator = &self.emulator;
if (rl.IsWindowResized()) {
const distance = getPrefferedDistanceToBox(camera, emulator.bbox);
const direction = camera.position.sub(emulator.position).normalize();
camera.position = emulator.position.add(direction.scale(distance));
}
if (rl.Vector3Equals(camera.position, rl.Vector3Zero()) == 1) {
const distance = getPrefferedDistanceToBox(camera, self.emulator.bbox);
camera.target = emulator.position;
camera.position = emulator.position.sub(rl.Vector3.new(0, 0, 1).scale(distance));
}
var camera_turn_acc = rl.Vector3Zero();
if (rl.IsMouseButtonDown(rl.MouseButton.MOUSE_BUTTON_LEFT)) {
if (@fabs(mouse_delta.x) > 5) {
const rotation_speed = 2; // Radians/second
camera_turn_acc.x = -rotation_speed*mouse_delta.x;
}
if (@fabs(mouse_delta.x) < 5) {
self.camera_turn_vel = self.camera_turn_vel.scale(0.90); // Holding drag
}
}
if (rl.IsMouseButtonPressed(rl.MouseButton.MOUSE_BUTTON_LEFT)) {
self.camera_target_orientation = null;
const now = rl.GetTime();
const duration_between_clicks = now - self.previous_click_time;
if (duration_between_clicks < 0.3) {
const ray = rl.GetMouseRay(rl.GetMousePosition(), camera.*);
const collision = rl.GetRayCollisionBox(ray, self.emulator.bbox);
if (collision.hit) {
const front_face_normal = rl.Vector3.new(0, 0, -1);
const back_face_normal = rl.Vector3.new(0, 0, 1);
if (rl.Vector3Equals(collision.normal, front_face_normal) == 1) {
self.camera_target_orientation = front_face_normal;
} else if (rl.Vector3Equals(collision.normal, back_face_normal) == 1) {
self.camera_target_orientation = back_face_normal;
}
}
}
self.previous_click_time = now;
}
if (self.camera_target_orientation) |target| {
const current_direction = camera.position.sub(emulator.position).normalize();
const current_angle = std.math.atan2(f32, current_direction.z, current_direction.x);
const target_angle = std.math.atan2(f32, target.z, target.x);
const diff_angle = std.math.pi - @mod((target_angle - current_angle) + 3*std.math.pi, 2*std.math.pi);
if (@fabs(diff_angle) < 0.001) {
self.camera_turn_vel.x = 0;
self.camera_target_orientation = null;
} else {
self.camera_turn_vel.x = diff_angle*3;
}
}
self.camera_turn_vel = self.camera_turn_vel.scale(0.95); // Ambient drag
self.camera_turn_vel = self.camera_turn_vel.add(camera_turn_acc.scale(dt));
const camera_min_vel = 0;
if (self.camera_turn_vel.length() > camera_min_vel) {
const rotation = rl.MatrixRotate(camera.up.normalize(), self.camera_turn_vel.x*dt);
var view = rl.Vector3Subtract(camera.position, camera.target);
view = rl.Vector3Transform(view, rotation);
camera.position = rl.Vector3Add(camera.target, view);
}
}
pub fn update(self: *Self, dt: f32) void {
self.updateCamera(dt);
const camera = &self.camera;
const cameraPos = [3]f32{ camera.position.x, camera.position.y, camera.position.z };
rl.SetShaderValue(self.shader, self.shader.locs.?[@intFromEnum(rl.ShaderLocationIndex.SHADER_LOC_VECTOR_VIEW)], &cameraPos, .SHADER_UNIFORM_VEC3);
const ray = rl.GetMouseRay(rl.GetMousePosition(), self.camera);
if (self.emulator.isOverPowerSwitch(ray)) {
if (rl.IsMouseButtonPressed(rl.MouseButton.MOUSE_BUTTON_LEFT)) {
self.toggle_power();
}
}
self.raylib_chip.update_input();
if (self.powered.*) {
self.raylib_chip.update(dt);
}
rl.BeginTextureMode(self.screen_texture);
{
self.raylib_chip.render();
}
rl.EndTextureMode();
// {
// var matProj = rl.MatrixIdentity();
// // projection = CAMERA_PERSPECTIVE
// matProj = rl.MatrixPerspective(camera.fovy*rl.DEG2RAD, (screen_width/screen_height), rl.RL_CULL_DISTANCE_NEAR, rl.RL_CULL_DISTANCE_FAR);
//
// var matView = rl.MatrixLookAt(camera.position, camera.target, camera.up);
// // Convert world position vector to quaternion
// var worldPos = rl.Vector4{ .x = position.x, .y = position.y, .z = position.z, .w = 1.0 };
//
// std.debug.print("worldPos {}\n", .{worldPos});
// // Transform world position to view
// worldPos = rl.QuaternionTransform(worldPos, matView);
//
// // Transform result to projection (clip space position)
// worldPos = rl.QuaternionTransform(worldPos, matProj);
//
// // Calculate normalized device coordinates (inverted y)
// var ndcPos = rl.Vector3.new( worldPos.x/worldPos.w, -worldPos.y/worldPos.w, worldPos.z/worldPos.w );
//
// // Calculate 2d screen position vector
// screen_position = rl.Vector2{ .x = (ndcPos.x + 1.0)/2.0*screen_width, .y = (ndcPos.y + 1.0)/2.0*screen_height };
// }
// const target_screen_position = rl.Vector2{ .x = screen_width/2, .y = screen_height*0.1 };
// {
// var matProj = get_camera_projection(&camera);
// var matView = rl.MatrixLookAt(camera.position, camera.target, camera.up);
//
// const ndc_x = (2.0*target_screen_position.x) / screen_width - 1.0;
// const ndc_y = 1.0 - (2.0*target_screen_position.y) / screen_height;
//
// var near_point = rl.Vector3Unproject(.{ .x = ndc_x, .y = ndc_y, .z = 0.0 }, matProj, matView);
// var far_point = rl.Vector3Unproject(.{ .x = ndc_x, .y = ndc_y, .z = 1.0 }, matProj, matView);
//
// var direction = rl.Vector3Subtract(far_point, near_point).normalize();
//
// var origin: rl.Vector3 = undefined;
// if (camera.projection == .CAMERA_PERSPECTIVE) {
// origin = camera.position;
// } else {
// origin = rl.Vector3Unproject(.{ .x = ndc_x, .y = ndc_y, .z = -1.0 }, matProj, matView);
// }
//
// var world_pos = origin.add(direction.scale(3));
//
// model_position = world_pos;
// }
self.raylib_chip.update(dt);
}
pub fn draw(self: *Self) void {
rl.ClearBackground(rl.Color{ .r = 33, .g = 33, .b = 33 });
rl.BeginShaderMode(self.shader);
{
rl.BeginMode3D(self.camera);
self.emulator.draw();
rl.EndMode3D();
}
rl.EndShaderMode();
self.raylib_chip.render();
}

View File

@ -1,36 +0,0 @@
const Self = @This();
const std = @import("std");
const Allocator = std.mem.Allocator;
allocator: Allocator,
vertex: [:0]u8,
fragment: [:0]u8,
pub fn init(allocator: Allocator, max_lights_count: u32) !Self {
const base_vertex_code = @embedFile("shaders/main_vs.glsl");
const base_fragment_code = @embedFile("shaders/main_fs.glsl");
const vertex = try allocator.dupeZ(u8, base_vertex_code);
errdefer allocator.free(vertex);
const newline = std.mem.indexOfScalar(u8, base_fragment_code, '\n') orelse unreachable;
const first_line = base_fragment_code[0..newline];
const after_first_line = base_fragment_code[(newline+1)..];
const fragment = try std.fmt.allocPrintZ(allocator,
\\{s}
\\#define MAX_LIGHTS {}
\\{s}
, .{ first_line, max_lights_count, after_first_line });
errdefer allocator.free(fragment);
return Self {
.allocator = allocator,
.vertex = vertex,
.fragment = fragment
};
}
pub fn deinit(self: Self) void {
self.allocator.free(self.vertex);
self.allocator.free(self.fragment);
}

View File

@ -1,78 +0,0 @@
#version 330
// Input vertex attributes (from vertex shader)
in vec3 fragPosition;
in vec2 fragTexCoord;
in vec4 fragColor;
in vec3 fragNormal;
// Input uniform values
uniform sampler2D texture0;
uniform vec4 colDiffuse;
// Output fragment color
layout (location = 0) out vec4 finalColor;
layout (location = 1) out vec4 bloomColor;
struct MaterialProperty {
vec3 color;
int useSampler;
sampler2D sampler;
};
#define LIGHT_DIRECTIONAL 0
#define LIGHT_POINT 1
struct Light {
int type;
bool enabled;
float intensity;
vec3 position;
vec4 color;
// Directional light arguments:
vec3 target;
};
// Input lighting values
uniform Light lights[MAX_LIGHTS];
uniform vec4 ambient;
uniform vec3 viewPos;
void main() {
// Texel color fetching from texture sampler
vec4 texelColor = texture(texture0, fragTexCoord);
finalColor = fragColor * texelColor;
{ // Apply lights
vec3 lightDot = vec3(0.0);
vec3 normal = normalize(fragNormal);
vec3 viewD = normalize(viewPos - fragPosition);
vec3 specular = vec3(0.0);
for (int i = 0; i < MAX_LIGHTS; i++) {
if (!lights[i].enabled) continue;
vec3 light = vec3(0.0);
if (lights[i].type == LIGHT_DIRECTIONAL) {
light = -normalize(lights[i].target - lights[i].position);
} else if (lights[i].type == LIGHT_POINT) {
light = normalize(lights[i].position - fragPosition);
}
float NdotL = max(dot(normal, light), 0.0);
lightDot += lights[i].color.rgb * NdotL * lights[i].intensity;
float specCo = 0.0;
if (NdotL > 0.0) specCo = pow(max(0.0, dot(viewD, reflect(-(light), normal))), 16.0); // 16 refers to shine
specular += specCo;
}
finalColor *= ((colDiffuse + vec4(specular, 1.0))*vec4(lightDot, 1.0) + (ambient/10.0)*colDiffuse);
}
// Gamma correction
finalColor = pow(finalColor, vec4(1.0/1.9));
}

View File

@ -1,31 +0,0 @@
#version 330
// Input vertex attributes
in vec3 vertexPosition;
in vec2 vertexTexCoord;
in vec3 vertexNormal;
in vec4 vertexColor;
// Input uniform values
uniform mat4 mvp;
uniform mat4 matModel;
uniform mat4 matNormal;
// Output vertex attributes (to fragment shader)
out vec3 fragPosition;
out vec2 fragTexCoord;
out vec4 fragColor;
out vec3 fragNormal;
// NOTE: Add here your custom variables
void main() {
// Send vertex attributes to fragment shader
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord;
fragColor = vertexColor;
fragNormal = normalize(vec3(matNormal*vec4(vertexNormal, 1.0)));
// Calculate final vertex position
gl_Position = mvp*vec4(vertexPosition, 1.0);
}