add switching to simulated mode in gui (freezes on exitting)

This commit is contained in:
Rokas Puzonas 2025-01-15 01:21:01 +02:00
parent b6859909ab
commit 1cca8c5806
8 changed files with 1120 additions and 385 deletions

View File

@ -20,6 +20,10 @@ pub fn subtract(self: Position, other: Position) Position {
return init(self.x - other.x, self.y - other.y);
}
pub fn multiply(self: Position, other: Position) Position {
return init(self.x * other.x, self.y * other.y);
}
pub fn distance(self: Position, other: Position) f32 {
const dx: f32 = @floatFromInt(self.x - other.x);
const dy: f32 = @floatFromInt(self.y - other.y);

View File

@ -459,6 +459,14 @@ pub fn prefetch(self: *Server, allocator: std.mem.Allocator, opts: PrefetchOptio
_ = try self.getImage(.map, skin);
}
}
inline for (std.meta.fields(Character.Skin)) |field| {
const skin: Character.Skin = @enumFromInt(field.value);
const skin_name = skin.toString();
if (self.store.images.getId(.character, skin_name) == null) {
_ = try self.getImage(.character, skin_name);
}
}
}
}

View File

@ -12,6 +12,7 @@ const rlgl_h = @cImport({
});
const assert = std.debug.assert;
const log = std.log.scoped(.app);
const App = @This();
@ -27,6 +28,7 @@ map_textures: std.ArrayList(MapTexture),
map_texture_indexes: std.ArrayList(usize),
map_position_min: Api.Position,
map_position_max: Api.Position,
character_skin_textures: std.EnumArray(Api.Character.Skin, rl.Texture2D),
camera: rl.Camera2D,
font_face: FontFace,
@ -35,7 +37,20 @@ blur_texture_horizontal: ?rl.RenderTexture = null,
blur_texture_both: ?rl.RenderTexture = null,
blur_shader: rl.Shader,
pub fn init(allocator: std.mem.Allocator, store: *Api.Store, server: *Api.Server) !App {
simulation: bool = false,
system_clock: Artificer.SystemClock,
started_at: i128,
artificer: Artificer.ArtificerApi,
sim_artificer: Artificer.ArtificerSim,
sim_server: Artificer.SimServer,
sim_started_at: i128,
last_sim_timestamp: i128 = 0,
thread_running: bool = true,
artificer_thread: std.Thread,
pub fn init(allocator: std.mem.Allocator, store: *Api.Store, server: *Api.Server) !*App {
var map_textures = std.ArrayList(MapTexture).init(allocator);
errdefer map_textures.deinit();
errdefer {
@ -54,20 +69,10 @@ pub fn init(allocator: std.mem.Allocator, store: *Api.Store, server: *Api.Server
for (map_image_ids) |image_id| {
const image = store.images.get(image_id).?;
const texture = rl.loadTextureFromImage(rl.Image{
.width = @intCast(image.width),
.height = @intCast(image.height),
.data = store.images.getRGBA(image_id).?.ptr,
.mipmaps = 1,
.format = rl.PixelFormat.pixelformat_uncompressed_r8g8b8a8
});
if (!rl.isTextureReady(texture)) {
return error.LoadMapTextureFromImage;
}
map_textures.appendAssumeCapacity(MapTexture{
.name = try Api.Map.Skin.fromSlice(image.code.slice()),
.texture = texture
.texture = try loadTextureFromStore(store, image_id)
});
}
}
@ -107,6 +112,15 @@ pub fn init(allocator: std.mem.Allocator, store: *Api.Store, server: *Api.Server
}
}
var character_skin_textures = std.EnumArray(Api.Character.Skin, rl.Texture2D).initUndefined();
inline for (std.meta.fields(Api.Character.Skin)) |field| {
const skin: Api.Character.Skin = @enumFromInt(field.value);
const skin_image_id = store.images.getId(.character, skin.toString()).?;
const texture = try loadTextureFromStore(store, skin_image_id);
character_skin_textures.set(skin, texture);
}
const blur_shader = rl.loadShaderFromMemory(
@embedFile("./base.vsh"),
@embedFile("./blur.fsh"),
@ -124,29 +138,75 @@ pub fn init(allocator: std.mem.Allocator, store: *Api.Store, server: *Api.Server
return error.LoadFontFromMemory;
}
return App{
const font_face = FontFace{ .font = font };
const ui = UI.init(font_face);
const character_id = store.characters.getId("Blondie").?;
const sim_server = Artificer.SimServer.init(0, store);
var app = try allocator.create(App);
errdefer allocator.destroy(app);
app.* = App{
.store = store,
.server = server,
.ui = UI.init(),
.system_clock = .{},
.sim_server = sim_server,
.started_at = 0,
.sim_started_at = sim_server.clock.nanoTimestamp(),
.ui = ui,
.map_textures = map_textures,
.map_texture_indexes = map_texture_indexes,
.map_position_max = map_position_max,
.map_position_min = map_position_min,
.character_skin_textures = character_skin_textures,
.blur_shader = blur_shader,
.font_face = .{ .font = font },
.font_face = font_face,
.camera = rl.Camera2D{
.offset = rl.Vector2.zero(),
.target = rl.Vector2.zero(),
.rotation = 0,
.zoom = 1,
}
},
.artificer = undefined,
.sim_artificer = undefined,
.artificer_thread = undefined,
};
app.started_at = app.system_clock.nanoTimestamp();
app.sim_artificer = try Artificer.ArtificerSim.init(allocator, store, &app.sim_server.clock, &app.sim_server, character_id);
errdefer app.sim_artificer.deinit(allocator);
app.artificer = try Artificer.ArtificerApi.init(allocator, store, &app.system_clock, server, character_id);
errdefer app.artificer.deinit(allocator);
app.artificer_thread = try std.Thread.spawn(.{ .allocator = allocator }, artificer_thread_cb, .{ app });
errdefer {
app.thread_running = false;
app.artificer_thread.join();
}
return app;
}
pub fn deinit(self: *App) void {
const allocator = self.map_textures.allocator;
self.thread_running = false;
self.artificer_thread.join();
self.artificer.deinit(allocator);
self.sim_artificer.deinit(allocator);
for (self.map_textures.items) |map_texture| {
map_texture.texture.unload();
}
for (self.character_skin_textures.values) |texture| {
texture.unload();
}
self.map_textures.deinit();
self.map_texture_indexes.deinit();
@ -161,6 +221,55 @@ pub fn deinit(self: *App) void {
if (self.blur_texture_original) |render_texture| {
render_texture.unload();
}
allocator.destroy(self);
}
fn artificer_thread_cb(app: *App) void {
while (app.thread_running) {
if (app.simulation) {
const artificer = &app.sim_artificer;
const expires_in = artificer.timeUntilCooldownExpires();
if (expires_in > 0) {
artificer.clock.sleep(expires_in);
}
artificer.tick() catch |e| {
log.err("Error in .tick in thread: {}", .{e});
app.thread_running = false;
};
} else {
const artificer = &app.artificer;
const expires_in = artificer.timeUntilCooldownExpires();
if (expires_in > 0) {
artificer.clock.sleep(expires_in);
}
artificer.tick() catch |e| {
log.err("Error in .tick in thread: {}", .{e});
app.thread_running = false;
};
}
}
}
fn loadTextureFromStore(store: *Api.Store, image_id: Api.Store.Id) !rl.Texture2D {
const image = store.images.get(image_id).?;
const texture = rl.loadTextureFromImage(rl.Image{
.width = @intCast(image.width),
.height = @intCast(image.height),
.data = store.images.getRGBA(image_id).?.ptr,
.mipmaps = 1,
.format = rl.PixelFormat.pixelformat_uncompressed_r8g8b8a8
});
if (!rl.isTextureReady(texture)) {
return error.LoadMapTextureFromImage;
}
return texture;
}
fn cameraControls(camera: *rl.Camera2D) void {
@ -243,206 +352,10 @@ fn createOrGetRenderTexture(maybe_render_texture: *?rl.RenderTexture) !rl.Render
return maybe_render_texture.*.?;
}
// Modified version of `DrawRectangleRounded` where the UV texture coordiantes are consistent and align
fn drawRectangleRoundedUV(rec: rl.Rectangle, roundness: f32, color: rl.Color) void {
assert(roundness < 1);
if (roundness <= 0 or rec.width <= 1 or rec.height <= 1) {
rl.drawRectangleRec(rec, color);
return;
}
const radius: f32 = @min(rec.width, rec.height) * roundness / 2;
if (radius <= 0.0) return;
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
const smooth_circle_error_rate = 0.5;
const th: f32 = std.math.acos(2 * std.math.pow(f32, 1 - smooth_circle_error_rate / radius, 2) - 1);
var segments: i32 = @intFromFloat(@ceil(2 * std.math.pi / th) / 4.0);
if (segments <= 0) segments = 4;
const step_length = 90.0 / @as(f32, @floatFromInt(segments));
// Quick sketch to make sense of all of this,
// there are 9 parts to draw, also mark the 12 points we'll use
//
// P0____________________P1
// /| |\
// /1| 2 |3\
// P7 /__|____________________|__\ P2
// | |P8 P9| |
// | 8 | 9 | 4 |
// | __|____________________|__ |
// P6 \ |P11 P10| / P3
// \7| 6 |5/
// \|____________________|/
// P5 P4
// Coordinates of the 12 points that define the rounded rect
const radius_u = radius / rec.width;
const radius_v = radius / rec.height;
const points = [_]rl.Vector2{
.{ .x = radius_u , .y = 0 }, // P0
.{ .x = 1 - radius_u , .y = 0 }, // P1
.{ .x = 1 , .y = radius_v }, // P2
.{ .x = 1 , .y = 1 - radius_v }, // P3
.{ .x = 1 - radius_u , .y = 1 }, // P4
.{ .x = radius_u , .y = 1 }, // P5
.{ .x = 0 , .y = 1 - radius_v }, // P6
.{ .x = 0 , .y = radius_v }, // P7
.{ .x = radius_u , .y = radius_v }, // P8
.{ .x = 1 - radius_u , .y = radius_v }, // P9
.{ .x = 1 - radius_u , .y = 1 - radius_v }, // P10
.{ .x = radius_u , .y = 1 - radius_v }, // P11
};
const texture = rl.getShapesTexture();
const shape_rect = rl.getShapesTextureRectangle();
const texture_width: f32 = @floatFromInt(texture.width);
const texture_height: f32 = @floatFromInt(texture.height);
rl.gl.rlBegin(rlgl_h.RL_TRIANGLES);
defer rl.gl.rlEnd();
rl.gl.rlSetTexture(texture.id);
defer rl.gl.rlSetTexture(0);
// Draw all of the 4 corners: [1] Upper Left Corner, [3] Upper Right Corner, [5] Lower Right Corner, [7] Lower Left Corner
const centers = [_]rl.Vector2{ points[8], points[9], points[10], points[11] };
const angles = [_]f32{ 180.0, 270.0, 0.0, 90.0 };
for (0..4) |k| {
var angle = angles[k];
const center = centers[k];
for (0..@intCast(segments)) |_| {
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
const rad_per_deg = std.math.rad_per_deg;
const triangle = .{
center,
.{
.x = center.x + @cos(rad_per_deg*(angle + step_length))*radius_u,
.y = center.y + @sin(rad_per_deg*(angle + step_length))*radius_v
},
.{
.x = center.x + @cos(rad_per_deg * angle)*radius_u,
.y = center.y + @sin(rad_per_deg * angle)*radius_v
}
};
inline for (triangle) |point| {
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
angle += step_length;
}
}
// [2] Upper Rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 0, 8, 9, 1, 0, 9 }) |index| {
const point = points[index];
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
// [4] Right Rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 9, 10, 3, 2, 9, 3 }) |index| {
const point = points[index];
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
// [6] Bottom Rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 11, 5, 4, 10, 11, 4 }) |index| {
const point = points[index];
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
// [8] Left Rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 7, 6, 11, 8, 7, 11 }) |index| {
const point = points[index];
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
// [9] Middle Rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 8, 11, 10, 9, 8, 10 }) |index| {
const point = points[index];
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
}
fn drawBlurredWorld(self: *App, rect: rl.Rectangle, color: rl.Color) void {
const blur_both = self.blur_texture_both.?.texture;
const previous_texture = rl.getShapesTexture();
const previous_rect = rl.getShapesTextureRectangle();
defer rl.setShapesTexture(previous_texture, previous_rect);
const texture_height: f32 = @floatFromInt(blur_both.height);
const shape_rect = rl.Rectangle{
.x = rect.x,
.y = texture_height - rect.y,
.width = rect.width,
.height = -rect.height,
};
rl.setShapesTexture(blur_both, shape_rect);
const border = 2;
const roundness = 0.2;
drawRectangleRoundedUV(rect, roundness, color);
rl.drawRectangleRoundedLinesEx(RectUtils.shrink(rect, border - 1, border - 1), roundness, 0, border, srcery.bright_white.alpha(0.3));
}
pub fn drawWorld(self: *App) void {
rl.clearBackground(srcery.black);
rl.drawCircleV(rl.Vector2.zero(), 5, rl.Color.red);
const tile_size = rl.Vector2.init(224, 224);
const map_size = self.map_position_max.subtract(self.map_position_min);
for (0..@intCast(map_size.y)) |oy| {
@ -453,11 +366,32 @@ pub fn drawWorld(self: *App) void {
const texture_index = self.map_texture_indexes.items[map_index];
const texture = self.map_textures.items[texture_index].texture;
const tile_size = rl.Vector2.init(224, 224);
const position = rl.Vector2.init(@floatFromInt(x), @floatFromInt(y)).multiply(tile_size);
rl.drawTextureV(texture, position, rl.Color.white);
}
}
for (self.store.characters.objects.items) |optional_character| {
if (optional_character != .object) continue;
const character = optional_character.object;
const skin_texture = self.character_skin_textures.get(character.skin);
const position = rl.Vector2{
.x = @floatFromInt(character.position.x),
.y = @floatFromInt(character.position.y),
};
const skin_size = rl.Vector2{
.x = @floatFromInt(skin_texture.width),
.y = @floatFromInt(skin_texture.height),
};
rl.drawTextureV(
skin_texture,
position.addValue(0.5).multiply(tile_size).subtract(skin_size.divide(.{ .x = 2, .y = 2 })),
rl.Color.white
);
}
}
pub fn drawWorldAndBlur(self: *App) !void {
@ -490,7 +424,6 @@ pub fn drawWorldAndBlur(self: *App) !void {
const i_i32: i32 = @intCast(i);
const io: f32 = @floatFromInt(i_i32 - kernel_radius);
kernel_coeffs[i] = @exp(-(io * io) / (sigma * sigma));
// kernel_coeffs[i] /= @floatFromInt(kernel_coeffs.len);
}
var kernel_sum: f32 = 0;
@ -601,11 +534,6 @@ fn drawRatelimits(self: *App, box: rl.Rectangle) void {
const Category = Api.RateLimit.Category;
const ratelimits = self.server.ratelimits;
self.drawBlurredWorld(
box,
srcery.xgray10
);
const padding = 16;
var stack = UI.Stack.init(RectUtils.shrink(box, padding, padding), .top_to_bottom);
stack.gap = 8;
@ -663,16 +591,92 @@ fn drawRatelimits(self: *App, box: rl.Rectangle) void {
}
}
fn showButton(self: *App, text: []const u8) UI.Interaction {
const key_hash: u16 = @truncate(@intFromPtr(text.ptr));
var button = self.ui.getOrAppendWidget(key_hash);
button.padding.vertical(8);
button.padding.horizontal(16);
button.flags.insert(.clickable);
button.size = .{
.x = .{ .text = {} },
.y = .{ .text = {} },
};
const interaction = self.ui.getInteraction(button);
var text_color: rl.Color = undefined;
if (interaction.held_down) {
button.background = .{ .color = srcery.hard_black };
text_color = srcery.white;
} else if (interaction.hovering) {
button.background = .{ .color = srcery.bright_black };
text_color = srcery.bright_white;
} else {
button.background = .{ .color = srcery.black };
text_color = srcery.bright_white;
}
button.text = .{
.content = text,
.color = text_color
};
return interaction;
}
fn showLabel(self: *App, text: []const u8) UI.Widget.Key {
const key_hash: u16 = @truncate(@intFromPtr(text.ptr));
var label = self.ui.getOrAppendWidget(key_hash);
label.text = .{
.content = text
};
label.size = .{
.x = .{ .text = {} },
.y = .{ .text = {} }
};
return label.key;
}
pub fn toggleSimulationMode(self: *App) void {
self.simulation = !self.simulation;
if (self.simulation) {
const system_clock = self.system_clock;
const time_passed = system_clock.nanoTimestamp() - self.started_at;
const sim_clock = &self.sim_server.clock;
sim_clock.timestamp_limit = self.sim_started_at + time_passed;
sim_clock.timestamp = sim_clock.timestamp_limit.?;
self.last_sim_timestamp = std.time.nanoTimestamp();
}
}
pub fn tick(self: *App) !void {
for (&self.server.ratelimits.values) |*ratelimit| {
ratelimit.update_timers(std.time.milliTimestamp());
}
if (self.simulation) {
const now = std.time.nanoTimestamp();
const time_passed = now - self.last_sim_timestamp;
self.last_sim_timestamp = now;
const sim_clock = &self.sim_server.clock;
sim_clock.timestamp_limit.? += time_passed;
}
const screen_width = rl.getScreenWidth();
const screen_height = rl.getScreenHeight();
const screen_size = rl.Vector2.init(@floatFromInt(screen_width), @floatFromInt(screen_height));
if (!self.ui.isHoveringAnything()) {
cameraControls(&self.camera);
self.ui.disable_mouse_interaction = rl.isMouseButtonDown(.mouse_button_left);
} else {
self.ui.disable_mouse_interaction = false;
}
rl.beginDrawing();
defer rl.endDrawing();
@ -681,9 +685,55 @@ pub fn tick(self: *App) !void {
try self.drawWorldAndBlur();
self.drawRatelimits(
.{ .x = 20, .y = 20, .width = 200, .height = 200 },
);
const ui = &self.ui;
if (self.blur_texture_both) |blur_texture_both| {
ui.blur_background = blur_texture_both.texture;
}
ui.begin();
ui.topWidget().padding.all(16);
ui.layout().gap = 8;
{
const panel = ui.getOrAppendWidget(ui.randomWidgetHash());
panel.size = .{ .x = .fit_children, .y = .fit_children };
panel.padding.all(16);
panel.layout.gap = 8;
panel.background = .blur_world;
ui.pushWidget(panel.key);
defer ui.popWidget();
if (self.simulation) {
const clock = self.sim_server.clock;
const started_at = self.sim_started_at;
const time_passed: f32 = @floatFromInt(clock.nanoTimestamp() - started_at);
var time_passed_buff: [128]u8 = undefined;
const time_passed_str = try std.fmt.bufPrint(&time_passed_buff, "Time passed: {d:.1}s", .{ time_passed / std.time.ns_per_s });
_ = self.showLabel(time_passed_str);
if (self.showButton("Turn off simulation").clicked) {
self.toggleSimulationMode();
}
} else {
const clock = self.system_clock;
const started_at = self.started_at;
const time_passed: f32 = @floatFromInt(clock.nanoTimestamp() - started_at);
var time_passed_buff: [128]u8 = undefined;
const time_passed_str = try std.fmt.bufPrint(&time_passed_buff, "Time passed: {d:.1}s", .{ time_passed / std.time.ns_per_s });
_ = self.showLabel(time_passed_str);
if (self.showButton("Turn on simulation").clicked) {
self.toggleSimulationMode();
}
}
}
ui.end();
// self.drawRatelimits(
// .{ .x = 20, .y = 20, .width = 200, .height = 200 },
// );
rl.drawFPS(
@as(i32, @intFromFloat(screen_size.x)) - 100,

View File

@ -104,6 +104,9 @@ pub fn main() anyerror!void {
try server.prefetchCached(allocator, cache_path, .{ .images = true });
}
const characters = try server.getMyCharacters(allocator);
characters.deinit();
rl.initWindow(800, 450, "Artificer");
defer rl.closeWindow();

View File

@ -1,200 +1,854 @@
// zig fmt: off
const std = @import("std");
const rl = @import("raylib");
const rect_utils = @import("./rect-utils.zig");
const assert = std.debug.assert;
const SourceLocation = std.builtin.SourceLocation;
const FontFace = @import("./font-face.zig");
const builtin = @import("builtin");
const srcery = @import("./srcery.zig");
const rlgl_h = @cImport({
@cInclude("rlgl.h");
});
// TODO: Implement Id context (I.e. ID parenting)
const Rect = rl.Rectangle;
const Vec2 = rl.Vector2;
const assert = std.debug.assert;
const UI = @This();
const max_stack_depth = 16;
const TransformFrame = struct {
offset: rl.Vector2,
scale: rl.Vector2,
pub const Interaction = struct {
widget: Widget.Key,
clicked: bool = false,
hovering: bool = false,
pressed: bool = false,
released: bool = false,
held_down: bool = false,
};
hot_widget: ?Id = null,
active_widget: ?Id = null,
const SemanticSize = union(enum) {
pixels: f32,
percent: f32,
fit_children,
text
};
transform_stack: std.BoundedArray(TransformFrame, max_stack_depth),
const SemanticVec2 = struct {
x: SemanticSize,
y: SemanticSize,
};
pub fn init() UI {
var stack = std.BoundedArray(TransformFrame, max_stack_depth).init(0) catch unreachable;
stack.appendAssumeCapacity(TransformFrame{
.offset = rl.Vector2{ .x = 0, .y = 0 },
.scale = rl.Vector2{ .x = 1, .y = 1 },
});
pub const Widget = struct {
const Flag = enum {
clickable,
passthrough
};
const Flags = std.EnumSet(Flag);
pub const Key = packed struct {
hash: u16 = 0,
extra: u16 = 0,
pub fn fromUsize(number: usize) Key {
return .{
.hash = @truncate(number),
};
}
pub fn eql(self: Key, other: Key) bool {
return self.hash == other.hash and self.extra == other.extra;
}
pub fn indexOf(haystack: []const Key, needle: Key) ?usize {
for (0.., haystack) |i, key| {
if (key.eql(needle)) {
return i;
}
}
return null;
}
};
const Sides = struct {
top: f32 = 0,
bottom: f32 = 0,
left: f32 = 0,
right: f32 = 0,
pub fn vertical(self: *Sides, amount: f32) void {
self.top = amount;
self.bottom = amount;
}
pub fn horizontal(self: *Sides, amount: f32) void {
self.left = amount;
self.right = amount;
}
pub fn all(self: *Sides, amount: f32) void {
self.top = amount;
self.bottom = amount;
self.left = amount;
self.right = amount;
}
};
key: Key = .{},
parent: Key = .{},
flags: Flags = .{},
layout: Layout = .{},
padding: Sides = .{},
corner_radius: f32 = 12,
size: SemanticVec2 = .{
.x = .{ .pixels = 0 },
.y = .{ .pixels = 0 },
},
text: ?struct {
content: []const u8,
color: rl.Color = srcery.bright_white,
} = null,
background: ?union(enum) {
color: rl.Color,
blur_world,
} = null,
computed_relative_position: ?Vec2 = null,
computed_content_size: ?Vec2 = null,
computed_rect: ?Rect = null,
fn computed_size(self: *const Widget) ?Vec2 {
if (self.computed_content_size) |content_size| {
return Vec2{
.x = content_size.x + self.padding.left + self.padding.right,
.y = content_size.y + self.padding.top + self.padding.bottom,
};
} else {
return null;
}
}
};
pub const Layout = struct {
pub const Kind = enum {
vertical_column
};
kind: Kind = .vertical_column,
gap: f32 = 0,
key_extra: u16 = 0
};
const debug = false;
const max_widgets = 64;
const Widgets = std.BoundedArray(Widget, max_widgets);
const random_seed = 0;
const root_widget_key = Widget.Key{ .hash = 0 };
prev_widgets: Widgets = .{},
widgets: Widgets = .{},
widget_stack: std.BoundedArray(Widget.Key, max_widgets) = .{},
font_face: FontFace,
random: std.Random.DefaultPrng,
blur_background: ?rl.Texture = null,
disable_mouse_interaction: bool = false,
// Debug fields
duplicate_keys: std.BoundedArray(Widget.Key, max_widgets) = .{},
pub fn init(font_face: FontFace) UI {
const random = std.Random.DefaultPrng.init(random_seed);
return UI{
.transform_stack = stack
.font_face = font_face,
.random = random
};
}
pub fn isHot(self: *const UI, id: Id) bool {
if (self.hot_widget) |hot_id| {
return hot_id.eql(id);
pub fn begin(self: *UI) void {
self.prev_widgets = self.widgets;
self.widgets.len = 0;
self.duplicate_keys.len = 0;
self.random = std.Random.DefaultPrng.init(random_seed);
self.widgets.appendAssumeCapacity(Widget{
.key = root_widget_key,
.size = .{
.x = .{ .pixels = @floatFromInt(rl.getScreenWidth()) },
.y = .{ .pixels = @floatFromInt(rl.getScreenHeight()) },
},
.flags = Widget.Flags.initMany(&.{ .passthrough })
});
self.pushWidget(root_widget_key);
}
pub fn end(self: *UI) void {
self.popWidget();
const widgets: []Widget = self.widgets.slice();
for (widgets) |*widget| {
widget.computed_content_size = Vec2{ .x = 0, .y = 0 };
widget.computed_relative_position = Vec2{ .x = 0, .y = 0 };
}
// (1) Calculate stadalone sizes
for (widgets) |*widget| {
var text_size = Vec2{ .x = 0, .y = 0 };
if (widget.text) |text| {
text_size = self.font_face.measureText(text.content);
}
var content_size = &widget.computed_content_size.?;
inline for (.{ "x", "y" }) |axis| {
const semantic_size = @field(widget.size, axis);
if (semantic_size == .pixels) {
@field(content_size, axis) = semantic_size.pixels;
} else if (semantic_size == .text) {
@field(content_size, axis) = @field(text_size, axis);
}
}
}
// (2) Upward dependent sizes
for (widgets) |*widget| {
if (widget.key.eql(root_widget_key)) continue;
const parent = self.getWidget(widget.parent);
const parent_size = parent.computed_size().?;
var content_size = &widget.computed_content_size.?;
if (widget.size.x == .percent) {
const percent = widget.size.x.percent;
content_size.x = parent_size.x * percent;
}
if (widget.size.y == .percent) {
const percent = widget.size.y.percent;
content_size.y = parent_size.y * percent;
}
}
for (0..widgets.len) |i| {
const widget = &widgets[widgets.len - i - 1];
var children = self.listChildren(widget);
// (3) Calculate relative position of each widget
switch (widget.layout.kind) {
.vertical_column => {
var y_offset: f32 = 0;
const children_slice: []*Widget = children.slice();
for (children_slice) |child| {
child.computed_relative_position.?.y += y_offset;
y_offset += child.computed_size().?.y;
y_offset += widget.layout.gap;
}
}
}
// (4) Downward dependent sizes
inline for (.{ "x", "y" }) |axis| {
if (@field(widget.size, axis) == .fit_children) {
var min = std.math.floatMax(f32);
var max = std.math.floatMin(f32);
for (children.constSlice()) |child| {
const child_size = child.computed_size().?;
const child_position = child.computed_relative_position.?;
min = @min(min, @field(child_position, axis));
max = @max(max, @field(child_position, axis) + @field(child_size, axis));
}
if (children.len > 0) {
@field(widget.computed_content_size.?, axis) = max - min;
}
}
}
}
for (widgets) |*widget| {
const computed_size = widget.computed_size().?;
const relative_position = widget.computed_relative_position.?;
var computed_rect = Rect{
.x = relative_position.x,
.y = relative_position.y,
.width = computed_size.x,
.height = computed_size.y,
};
if (!widget.key.eql(root_widget_key)) {
const parent = self.getWidget(widget.parent);
computed_rect.x += parent.padding.left;
computed_rect.y += parent.padding.top;
if (parent.computed_rect) |parent_rect| {
computed_rect.x += parent_rect.x;
computed_rect.y += parent_rect.y;
}
}
widget.computed_rect = computed_rect;
}
const duplicate_keys = self.duplicate_keys.constSlice();
for (widgets) |*widget|{
const rect = widget.computed_rect orelse continue;
const padding = widget.padding;
const content_rect = Rect{
.x = rect.x + padding.left,
.y = rect.y + padding.top,
.width = rect.width - padding.left - padding.right,
.height = rect.height - padding.top - padding.bottom,
};
if (widget.background) |background| {
switch (background) {
.color => |bg_color| {
drawRectangleRoundedUV(rect, widget.corner_radius, bg_color);
},
.blur_world => {
const bg_color = srcery.xgray10;
if (self.blur_background) |texture| {
const border = 2.5;
{
const previous_texture = rl.getShapesTexture();
const previous_rect = rl.getShapesTextureRectangle();
defer rl.setShapesTexture(previous_texture, previous_rect);
const texture_height: f32 = @floatFromInt(texture.height);
const shape_rect = rl.Rectangle{
.x = rect.x,
.y = texture_height - rect.y,
.width = rect.width,
.height = -rect.height,
};
rl.setShapesTexture(texture, shape_rect);
drawRectangleRoundedUV(rect, widget.corner_radius, bg_color);
rl.gl.rlDrawRenderBatchActive();
}
drawRectangleRoundedLinesEx(
rect,
widget.corner_radius,
border,
srcery.bright_white.alpha(0.25)
);
rl.gl.rlDrawRenderBatchActive();
}
}
}
}
if (widget.text) |text| {
self.font_face.drawTextCenter(
text.content,
rect_utils.center(content_rect),
text.color
);
}
}
if (builtin.mode == .Debug) {
for (widgets) |widget|{
const rect = widget.computed_rect orelse continue;
if (Widget.Key.indexOf(duplicate_keys, widget.key) != null) {
const time: f32 = @floatCast(rl.getTime());
if (@rem(time, 0.4) < 0.2) {
rl.drawRectangleLinesEx(rect, 3, rl.Color.purple);
} else {
rl.drawRectangleLinesEx(rect, 3, rl.Color.red);
}
}
}
}
}
pub fn pushWidget(self: *UI, key: Widget.Key) void {
self.widget_stack.appendAssumeCapacity(key);
}
pub fn popWidget(self: *UI) void {
assert(self.widget_stack.len >= 1);
_ = self.widget_stack.pop();
}
pub fn topWidget(self: *UI) *Widget {
const top_key = self.widget_stack.buffer[self.widget_stack.len - 1];
return self.getWidget(top_key);
}
pub fn layout(self: *UI) *Layout {
return &self.topWidget().layout;
}
pub fn getOrAppendWidget(self: *UI, key_hash: u16) *Widget {
const parent = self.topWidget();
const key = Widget.Key{
.hash = key_hash,
.extra = parent.layout.key_extra
};
var found_prev_widget: ?Widget = null;
for (self.prev_widgets.constSlice()) |widget| {
if (widget.key.eql(key)) {
found_prev_widget = widget;
break;
}
}
for (self.widgets.constSlice()) |widget| {
if (widget.key.eql(key)) {
self.duplicate_keys.appendAssumeCapacity(widget.key);
break;
}
}
if (found_prev_widget) |prev_widget| {
self.widgets.appendAssumeCapacity(prev_widget);
} else {
self.widgets.appendAssumeCapacity(Widget{
.key = key
});
}
const widget = &self.widgets.buffer[self.widgets.len - 1];
assert(self.widget_stack.len >= 1);
widget.parent = self.widget_stack.buffer[self.widget_stack.len-1];
return widget;
}
pub fn getWidget(self: *UI, key: Widget.Key) *Widget {
for (self.widgets.slice()) |*widget| {
if (widget.key.eql(key)) {
return widget;
}
}
@panic("Failed to find widget");
}
pub fn getInteraction(self: *UI, widget: *const Widget) Interaction {
var interaction = Interaction{
.widget = widget.key
};
const rect = widget.computed_rect orelse return interaction;
if (!self.disable_mouse_interaction) {
const mouse = rl.getMousePosition();
if (!widget.flags.contains(.passthrough) and rect_utils.isInsideVec2(rect, mouse)) {
interaction.hovering = true;
if (rl.isMouseButtonPressed(.mouse_button_left)) {
interaction.pressed = true;
}
if (rl.isMouseButtonReleased(.mouse_button_left)) {
interaction.released = true;
if (widget.flags.contains(.clickable)) {
interaction.clicked = true;
}
}
if (rl.isMouseButtonDown(.mouse_button_left)) {
interaction.held_down = true;
}
}
}
return interaction;
}
pub fn isHoveringAnything(self: *UI) bool {
const widgets: []Widget = self.widgets.slice();
for (widgets) |*widget|{
const interaction = self.getInteraction(widget);
if (interaction.hovering) {
return true;
}
}
return false;
}
pub fn isActive(self: *const UI, id: Id) bool {
if (self.active_widget) |active_id| {
return active_id.eql(id);
}
return false;
pub fn randomWidgetHash(self: *UI) u16 {
const rng = self.random.random();
return rng.int(u16);
}
pub fn hashSrc(src: SourceLocation) u64 {
var hash = std.hash.Fnv1a_64.init();
hash.update(src.file);
hash.update(std.mem.asBytes(&src.line));
hash.update(std.mem.asBytes(&src.column));
return hash.value;
fn listChildren(self: *UI, parent: *Widget) std.BoundedArray(*Widget, max_widgets) {
var children: std.BoundedArray(*Widget, max_widgets) = .{};
const widgets: []Widget = self.widgets.slice();
for (widgets) |*child| {
if (child == parent) {
continue;
}
fn getTopFrame(self: *UI) *TransformFrame {
assert(self.transform_stack.len >= 1);
return &self.transform_stack.buffer[self.transform_stack.len-1];
if (child.parent.eql(parent.key)) {
children.appendAssumeCapacity(child);
}
}
pub fn getMousePosition(self: *UI) rl.Vector2 {
const frame = self.getTopFrame();
return rl.getMousePosition().subtract(frame.offset).divide(frame.scale);
return children;
}
pub fn getMouseDelta(self: *UI) rl.Vector2 {
const frame = self.getTopFrame();
return rl.Vector2.multiply(rl.getMouseDelta(), frame.scale);
// Modified version of `DrawRectangleRounded` where the UV texture coordiantes are consistent and align
fn drawRectangleRoundedUV(rec: rl.Rectangle, radius: f32, color: rl.Color) void {
if (radius <= 0 or rec.width <= 1 or rec.height <= 1) {
rl.drawRectangleRec(rec, color);
return;
}
pub fn getMouseWheelMove(self: *UI) f32 {
const frame = self.getTopFrame();
return rl.getMouseWheelMove() * frame.scale.y;
if (radius <= 0.0) return;
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
const smooth_circle_error_rate = 0.5;
const th: f32 = std.math.acos(2 * std.math.pow(f32, 1 - smooth_circle_error_rate / radius, 2) - 1);
var segments: i32 = @intFromFloat(@ceil(2 * std.math.pi / th) / 4.0);
segments = @max(segments, 4);
const step_length = 90.0 / @as(f32, @floatFromInt(segments));
// Quick sketch to make sense of all of this,
// there are 9 parts to draw, also mark the 12 points we'll use
//
// P0____________________P1
// /| |\
// /1| 2 |3\
// P7 /__|____________________|__\ P2
// | |P8 P9| |
// | 8 | 9 | 4 |
// | __|____________________|__ |
// P6 \ |P11 P10| / P3
// \7| 6 |5/
// \|____________________|/
// P5 P4
// Coordinates of the 12 points that define the rounded rect
const radius_u = radius / rec.width;
const radius_v = radius / rec.height;
const points = [_]rl.Vector2{
.{ .x = radius_u , .y = 0 }, // P0
.{ .x = 1 - radius_u , .y = 0 }, // P1
.{ .x = 1 , .y = radius_v }, // P2
.{ .x = 1 , .y = 1 - radius_v }, // P3
.{ .x = 1 - radius_u , .y = 1 }, // P4
.{ .x = radius_u , .y = 1 }, // P5
.{ .x = 0 , .y = 1 - radius_v }, // P6
.{ .x = 0 , .y = radius_v }, // P7
.{ .x = radius_u , .y = radius_v }, // P8
.{ .x = 1 - radius_u , .y = radius_v }, // P9
.{ .x = 1 - radius_u , .y = 1 - radius_v }, // P10
.{ .x = radius_u , .y = 1 - radius_v }, // P11
};
const texture = rl.getShapesTexture();
const shape_rect = rl.getShapesTextureRectangle();
const texture_width: f32 = @floatFromInt(texture.width);
const texture_height: f32 = @floatFromInt(texture.height);
rl.gl.rlBegin(rlgl_h.RL_TRIANGLES);
defer rl.gl.rlEnd();
rl.gl.rlSetTexture(texture.id);
defer rl.gl.rlSetTexture(0);
// Draw all of the 4 corners: [1] Upper Left Corner, [3] Upper Right Corner, [5] Lower Right Corner, [7] Lower Left Corner
const centers = [_]rl.Vector2{ points[8], points[9], points[10], points[11] };
const angles = [_]f32{ 180.0, 270.0, 0.0, 90.0 };
for (0..4) |k| {
var angle = angles[k];
const center = centers[k];
for (0..@intCast(segments)) |_| {
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
const rad_per_deg = std.math.rad_per_deg;
const triangle = .{
center,
.{
.x = center.x + @cos(rad_per_deg*(angle + step_length))*radius_u,
.y = center.y + @sin(rad_per_deg*(angle + step_length))*radius_v
},
.{
.x = center.x + @cos(rad_per_deg * angle)*radius_u,
.y = center.y + @sin(rad_per_deg * angle)*radius_v
}
};
pub fn isMouseInside(self: *UI, rect: rl.Rectangle) bool {
return rect_utils.isInsideVec2(rect, self.getMousePosition());
}
pub fn transformScale(self: *UI, x: f32, y: f32) void {
const frame = self.getTopFrame();
frame.scale.x *= x;
frame.scale.y *= y;
rl.gl.rlScalef(x, y, 1);
}
pub fn transformTranslate(self: *UI, x: f32, y: f32) void {
const frame = self.getTopFrame();
frame.offset.x += x * frame.scale.x;
frame.offset.y += y * frame.scale.y;
rl.gl.rlTranslatef(x, y, 0);
}
pub fn pushTransform(self: *UI) void {
rl.gl.rlPushMatrix();
self.transform_stack.appendAssumeCapacity(self.getTopFrame().*);
}
pub fn popTransform(self: *UI) void {
assert(self.transform_stack.len >= 2);
rl.gl.rlPopMatrix();
_ = self.transform_stack.pop();
}
pub fn beginScissorMode(self: *UI, x: f32, y: f32, width: f32, height: f32) void {
const frame = self.getTopFrame();
rl.beginScissorMode(
@intFromFloat(x * frame.scale.x + frame.offset.x),
@intFromFloat(y * frame.scale.y + frame.offset.y),
@intFromFloat(width * frame.scale.x),
@intFromFloat(height * frame.scale.y),
inline for (triangle) |point| {
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
pub fn beginScissorModeRect(self: *UI, rect: rl.Rectangle) void {
self.beginScissorMode(rect.x, rect.y, rect.width, rect.height);
angle += step_length;
}
}
pub fn endScissorMode(self: *UI) void {
_ = self;
rl.endScissorMode();
// [2] Upper Rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 0, 8, 9, 1, 0, 9 }) |index| {
const point = points[index];
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
pub const Id = struct {
location: u64,
extra: u32 = 0,
pub fn init(comptime src: SourceLocation) Id {
return Id{ .location = comptime hashSrc(src) };
// [4] Right Rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 9, 10, 3, 2, 9, 3 }) |index| {
const point = points[index];
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
pub fn eql(a: Id, b: Id) bool {
return a.location == b.location and a.extra == b.extra;
// [6] Bottom Rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 11, 5, 4, 10, 11, 4 }) |index| {
const point = points[index];
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
// [8] Left Rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 7, 6, 11, 8, 7, 11 }) |index| {
const point = points[index];
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
// [9] Middle Rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 8, 11, 10, 9, 8, 10 }) |index| {
const point = points[index];
rl.gl.rlTexCoord2f(
(shape_rect.x + shape_rect.width * point.x) / texture_width,
(shape_rect.y + shape_rect.height * point.y) / texture_height
);
rl.gl.rlVertex2f(
rec.x + rec.width * point.x,
rec.y + rec.height * point.y
);
}
}
// Modified version of `DrawRectangleRoundedLinesEx` where the corner radius is provided
fn drawRectangleRoundedLinesEx(rec: rl.Rectangle, radius: f32, _line_thick: f32, color: rl.Color) void {
var line_thick = _line_thick;
if (line_thick < 0) line_thick = 0;
// Not a rounded rectangle
if (radius <= 0.0) {
rl.drawRectangleLinesEx(rl.Rectangle{
.x = rec.x,
.y = rec.y,
.width = rec.width,
.height = rec.height
}, line_thick, color);
return;
}
// Calculate number of segments to use for the corners
const smooth_circle_error_rate = 0.5;
const th: f32 = std.math.acos(2 * std.math.pow(f32, 1 - smooth_circle_error_rate / radius, 2) - 1);
var segments: i32 = @intFromFloat(@ceil(2 * std.math.pi / th) / 4.0);
segments = @max(segments, 4);
const step_length = 90.0/@as(f32, @floatFromInt(segments));
const outer_radius = radius;
const inner_radius = radius - line_thick;
// Quick sketch to make sense of all of this,
// marks the 16 + 4(corner centers P16-19) points we'll use
//
// P0 ================== P1
// // P8 P9 \\
// // \\
// P7 // P15 P10 \\ P2
// || *P16 P17* ||
// || ||
// || P14 P11 ||
// P6 \\ *P19 P18* // P3
// \\ //
// \\ P13 P12 //
// P5 ================== P4
const points = [_]rl.Vector2{
.{ .x = outer_radius , .y = 0 }, // P0
.{ .x = rec.width - outer_radius , .y = 0 }, // P1
.{ .x = rec.width , .y = outer_radius }, // P2
.{ .x = rec.width , .y = rec.height - outer_radius }, // P3
.{ .x = rec.width - outer_radius , .y = rec.height }, // P4
.{ .x = outer_radius , .y = rec.height }, // P5
.{ .x = 0 , .y = rec.height - outer_radius }, // P6
.{ .x = 0 , .y = outer_radius }, // P7
.{ .x = outer_radius , .y = line_thick }, // P8
.{ .x = rec.width - outer_radius , .y = line_thick }, // P9
.{ .x = rec.width - line_thick , .y = outer_radius }, // P10
.{ .x = rec.width - line_thick , .y = rec.height - outer_radius }, // P11
.{ .x = rec.width - outer_radius , .y = rec.height - line_thick }, // P12
.{ .x = outer_radius , .y = rec.height - line_thick }, // P13
.{ .x = line_thick , .y = rec.height - outer_radius }, // P14
.{ .x = line_thick , .y = outer_radius }, // P15
};
pub const Stack = struct {
pub const Direction = enum {
top_to_bottom,
bottom_to_top,
left_to_right
const centers = [_]rl.Vector2{
.{ .x = outer_radius , .y = outer_radius }, // P16
.{ .x = rec.width - outer_radius , .y = outer_radius }, // P17
.{ .x = rec.width - outer_radius , .y = rec.height - outer_radius }, // P18
.{ .x = outer_radius , .y = rec.height - outer_radius }, // P18
};
unused_box: rl.Rectangle,
dir: Direction,
gap: f32 = 0,
const angles = [_]f32{ 180.0, 270.0, 0.0, 90.0 };
pub fn init(box: rl.Rectangle, dir: Direction) Stack {
return Stack{
.unused_box = box,
.dir = dir
};
}
if (line_thick > 1) {
rl.gl.rlBegin(rlgl_h.RL_TRIANGLES);
defer rl.gl.rlEnd();
pub fn next(self: *Stack, size: f32) rl.Rectangle {
return switch (self.dir) {
.top_to_bottom => {
const next_box = rl.Rectangle.init(self.unused_box.x, self.unused_box.y, self.unused_box.width, size);
self.unused_box.y += size;
self.unused_box.y += self.gap;
return next_box;
// Draw all of the 4 corners first: Upper Left Corner, Upper Right Corner, Lower Right Corner, Lower Left Corner
for (centers, angles) |center, initialAngle| {
var angle = initialAngle;
for (0..@intCast(segments)) |_| {
const rad_per_deg = std.math.rad_per_deg;
const next_angle = angle + step_length;
const rect_points = .{
rl.Vector2{
.x = @cos(rad_per_deg * angle) * inner_radius,
.y = @sin(rad_per_deg * angle) * inner_radius
},
.bottom_to_top => {
const next_box = rl.Rectangle.init(self.unused_box.x, self.unused_box.y + self.unused_box.height - size, self.unused_box.width, size);
self.unused_box.height -= size;
self.unused_box.height -= self.gap;
return next_box;
rl.Vector2{
.x = @cos(rad_per_deg * next_angle) * inner_radius,
.y = @sin(rad_per_deg * next_angle) * inner_radius
},
.left_to_right => {
const next_box = rl.Rectangle.init(self.unused_box.x, self.unused_box.y, size, self.unused_box.height);
self.unused_box.x += size;
self.unused_box.x += self.gap;
return next_box;
rl.Vector2{
.x = @cos(rad_per_deg * angle) * outer_radius,
.y = @sin(rad_per_deg * angle) * outer_radius
},
};
rl.Vector2{
.x = @cos(rad_per_deg * next_angle) * outer_radius,
.y = @sin(rad_per_deg * next_angle) * outer_radius
}
};
pub const IdIterator = struct {
id: Id,
counter: u32,
pub fn init(comptime src: SourceLocation) IdIterator {
return IdIterator{
.id = Id.init(src),
.counter = 0
};
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 0, 1, 2, 1, 3, 2 }) |i| {
rl.gl.rlVertex2f(
rec.x + center.x + rect_points[i].x,
rec.y + center.y + rect_points[i].y
);
}
pub fn next(self: *IdIterator) Id {
var id = self.id;
id.extra = self.counter;
self.counter += 1;
return id;
angle = next_angle;
}
}
// Upper rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 0, 8, 9, 1, 0, 9 }) |i| {
rl.gl.rlVertex2f(rec.x + points[i].x, rec.y + points[i].y);
}
// Right rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 10, 11, 3, 2, 10, 3 }) |i| {
rl.gl.rlVertex2f(rec.x + points[i].x, rec.y + points[i].y);
}
// Lower rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 13, 5, 4, 12, 13, 4 }) |i| {
rl.gl.rlVertex2f(rec.x + points[i].x, rec.y + points[i].y);
}
// Left rectangle
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
inline for (.{ 7, 6, 14, 15, 7, 14 }) |i| {
rl.gl.rlVertex2f(rec.x + points[i].x, rec.y + points[i].y);
}
} else {
// Use LINES to draw the outline
rl.gl.rlBegin(rlgl_h.RL_LINES);
defer rl.gl.rlEnd();
// Draw all the 4 corners first: Upper Left Corner, Upper Right Corner, Lower Right Corner, Lower Left Corner
for (centers, angles) |center, initialAngle| {
var angle = initialAngle;
for (0..@intCast(segments)) |_| {
const rad_per_deg = std.math.rad_per_deg;
const next_angle = angle + step_length;
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
rl.gl.rlVertex2f(
rec.x + center.x + @cos(rad_per_deg*angle)*outer_radius,
rec.y + center.y + @sin(rad_per_deg*angle)*outer_radius
);
rl.gl.rlVertex2f(
rec.x + center.x + @cos(rad_per_deg*next_angle)*outer_radius,
rec.y + center.y + @sin(rad_per_deg*next_angle)*outer_radius
);
angle = next_angle;
}
}
// And now the remaining 4 lines
inline for (.{ 0, 2, 4, 6 }) |i| {
rl.gl.rlColor4ub(color.r, color.g, color.b, color.a);
rl.gl.rlVertex2f(rec.x + points[i + 0].x, rec.y + points[i + 0].y);
rl.gl.rlVertex2f(rec.x + points[i + 1].x, rec.y + points[i + 1].y);
}
}
}
};

View File

@ -275,7 +275,7 @@ pub fn ArtificerType(Clock: type, Server: type) type {
return slot;
}
fn timeUntilCooldownExpires(self: *Self) u64 {
pub fn timeUntilCooldownExpires(self: *Self) u64 {
const store = self.server.store;
const character = store.characters.get(self.character).?;

View File

@ -3,9 +3,25 @@ const std = @import("std");
const Clock = @This();
timestamp: i128 = 0,
timestamp_limit: ?i128 = null,
pub fn sleep(self: *Clock, nanoseconds: u64) void {
self.timestamp += @intCast(nanoseconds);
const nanoseconds_i128: i128 = @intCast(nanoseconds);
const new_timestamp = self.timestamp + nanoseconds_i128;
if (self.timestamp_limit != null) {
while (true) {
self.timestamp = @min(self.timestamp_limit.?, new_timestamp);
if (self.timestamp < self.timestamp_limit.?) {
break;
}
std.time.sleep(std.time.ms_per_s * 100);
}
} else {
self.timestamp = new_timestamp;
}
}
pub fn nanoTimestamp(self: Clock) i128 {

View File

@ -6,7 +6,7 @@ pub fn sleep(self: *Clock, nanoseconds: u64) void {
std.time.sleep(nanoseconds);
}
pub fn nanoTimestamp(self: *Clock) i128 {
pub fn nanoTimestamp(self: Clock) i128 {
_ = self;
return std.time.nanoTimestamp();
}