1
0
aoc-2022/day22.c

600 lines
14 KiB
C

#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <sys/param.h>
#include <math.h>
#include "vec2.h"
#include "types.h"
#include "aoc.h"
typedef enum {
TILE_VOID,
TILE_EMPTY,
TILE_WALL,
} day22_tile;
char g_day22_tiles[] = {
[TILE_VOID ] = ' ',
[TILE_EMPTY] = '.',
[TILE_WALL ] = '#'
};
typedef enum {
FACING_RIGHT,
FACING_DOWN,
FACING_LEFT,
FACING_UP,
} day22_facing;
char *g_day22_facing_str[] = {
[FACING_RIGHT] = "right",
[FACING_DOWN ] = "down",
[FACING_LEFT ] = "left",
[FACING_UP ] = "up",
};
vec2 g_day22_dirs[] = {
[FACING_RIGHT] = { .x = 1, .y = 0},
[FACING_DOWN ] = { .x = 0, .y = 1},
[FACING_LEFT ] = { .x = -1, .y = 0},
[FACING_UP ] = { .x = 0, .y = -1},
};
typedef enum {
INST_WALK,
INST_LEFT,
INST_RIGHT,
} day22_instruction_op;
typedef struct {
day22_tile *tiles;
u32 width;
u32 height;
} day22_map;
// N T
// W E
// S B
//
// Reference image: https://media.printables.com/media/prints/209926/images/1928241_bf5690f2-3397-4519-aa4a-43afc07c0eaa/thumbs/inside/1920x1440/jpg/dice.webp
// Reference model: https://sketchfab.com/3d-models/6-sided-dice-7564358b73614881a1e838a0827f10f8
// Unwrapped faces, based on 6-sided die:
// N 3
// T 1
// WSE 542
// B 6
//
typedef enum {
FACE_TOP, // 0
FACE_EAST, // 1
FACE_NORTH, // 2
FACE_SOUTH, // 3
FACE_WEST, // 4
FACE_BOTTOM, // 5
} day22_face;
char *g_day22_face_str[] = {
[FACE_TOP ] = "top",
[FACE_EAST ] = "east",
[FACE_NORTH ] = "north",
[FACE_SOUTH ] = "south",
[FACE_WEST ] = "west",
[FACE_BOTTOM] = "bottom",
};
day22_face g_day22_relface[6][4] = {
[FACE_TOP] = {
[FACING_RIGHT] = FACE_EAST,
[FACING_DOWN ] = FACE_SOUTH,
[FACING_LEFT ] = FACE_WEST,
[FACING_UP ] = FACE_NORTH,
},
[FACE_EAST] = {
[FACING_RIGHT] = FACE_NORTH,
[FACING_DOWN ] = FACE_BOTTOM,
[FACING_LEFT ] = FACE_SOUTH,
[FACING_UP ] = FACE_TOP,
},
[FACE_NORTH] = {
[FACING_RIGHT] = FACE_EAST,
[FACING_DOWN ] = FACE_TOP,
[FACING_LEFT ] = FACE_WEST,
[FACING_UP ] = FACE_BOTTOM,
},
[FACE_SOUTH] = {
[FACING_RIGHT] = FACE_EAST,
[FACING_DOWN ] = FACE_BOTTOM,
[FACING_LEFT ] = FACE_WEST,
[FACING_UP ] = FACE_TOP,
},
[FACE_WEST] = {
[FACING_RIGHT] = FACE_SOUTH,
[FACING_DOWN ] = FACE_BOTTOM,
[FACING_LEFT ] = FACE_NORTH,
[FACING_UP ] = FACE_TOP,
},
[FACE_BOTTOM] = {
[FACING_RIGHT] = FACE_EAST,
[FACING_DOWN ] = FACE_NORTH,
[FACING_LEFT ] = FACE_WEST,
[FACING_UP ] = FACE_SOUTH,
},
};
day22_facing g_day22_relfacing[6][4] = {
[FACE_TOP] = {
[FACING_RIGHT] = FACING_DOWN,
[FACING_DOWN ] = FACING_DOWN,
[FACING_LEFT ] = FACING_DOWN,
[FACING_UP ] = FACING_UP,
},
[FACE_EAST] = {
[FACING_RIGHT] = FACING_LEFT,
[FACING_DOWN ] = FACING_LEFT,
[FACING_LEFT ] = FACING_LEFT,
[FACING_UP ] = FACING_LEFT,
},
[FACE_NORTH] = {
[FACING_RIGHT] = FACING_LEFT,
[FACING_DOWN ] = FACING_DOWN,
[FACING_LEFT ] = FACING_RIGHT,
[FACING_UP ] = FACING_UP,
},
[FACE_SOUTH] = {
[FACING_RIGHT] = FACING_RIGHT,
[FACING_DOWN ] = FACING_DOWN,
[FACING_LEFT ] = FACING_LEFT,
[FACING_UP ] = FACING_UP,
},
[FACE_WEST] = {
[FACING_RIGHT] = FACING_RIGHT,
[FACING_DOWN ] = FACING_RIGHT,
[FACING_LEFT ] = FACING_RIGHT,
[FACING_UP ] = FACING_RIGHT,
},
[FACE_BOTTOM] = {
[FACING_RIGHT] = FACING_UP,
[FACING_DOWN ] = FACING_DOWN,
[FACING_LEFT ] = FACING_UP,
[FACING_UP ] = FACING_UP,
},
};
typedef struct {
day22_map *map;
vec2 faces[6];
u32 face_size;
} day22_cube_map;
typedef struct {
day22_instruction_op op;
u32 amount;
} day22_instruction;
typedef struct {
day22_instruction *list;
u32 count;
} day22_instructions;
typedef struct {
day22_map map;
day22_instructions instructions;
} day22_data;
typedef bool (*step_cb)(void*, vec2*, day22_facing*);
static day22_tile day22_tile_from_char(char c)
{
switch(c) {
case ' ': return TILE_VOID;
case '.': return TILE_EMPTY;
case '#': return TILE_WALL;
default: assert(false && "Unknonwn tile symbol");
}
}
static void* day22_parse(char** lines, int line_count)
{
day22_data *data = malloc(sizeof(day22_data));
data->map.height = line_count - 2;
data->map.width = strlen(lines[0]);
for (int i = 1; i < data->map.height; i++) {
data->map.width = MAX(data->map.width, strlen(lines[i]));
}
u32 tiles_size = sizeof(day22_tile) * data->map.width * data->map.height;
data->map.tiles = malloc(tiles_size);
memset(data->map.tiles, TILE_VOID, tiles_size);
for (int y = 0; y < data->map.height; y++) {
for (int x = 0; x < MIN(strlen(lines[y]), data->map.width); x++) {
int idx = y * data->map.width + x;
data->map.tiles[idx] = day22_tile_from_char(lines[y][x]);
}
}
u32 capacity = 1024*4;
data->instructions.list = calloc(capacity, sizeof(day22_instruction));
data->instructions.count = 0;
char *instructions = lines[line_count-1];
while (instructions[0]) {
assert(data->instructions.count+1 < capacity);
day22_instruction *inst = &data->instructions.list[data->instructions.count];
if (instructions[0] == 'R') {
inst->op = INST_RIGHT;
instructions++;
} else if (instructions[0] == 'L') {
inst->op = INST_LEFT;
instructions++;
} else {
inst->op = INST_WALK;
inst->amount = strtol(instructions, &instructions, 10);
}
data->instructions.count++;
}
return data;
}
static void day22_print_map(day22_map *map)
{
for (int y = 0; y < map->height; y++) {
for (int x = 0; x < map->width; x++) {
u32 idx = y * map->width + x;
day22_tile tile = map->tiles[idx];
printf("%c", g_day22_tiles[tile]);
}
printf("\n");
}
}
static void day22_print_instructions(day22_instructions *insts)
{
for (int i = 0; i < insts->count; i++) {
day22_instruction *inst = &insts->list[i];
switch (inst->op) {
case INST_WALK:
printf("%d", inst->amount);
break;
case INST_LEFT:
printf("L");
break;
case INST_RIGHT:
printf("R");
break;
}
}
printf("\n");
}
static vec2 day22_starting_pos(day22_map *map)
{
for (int x = 0; x < map->width; x++) {
if (map->tiles[x] == TILE_EMPTY) {
vec2 pos = { .x = x, .y = 0 };
return pos;
}
}
assert(false && "Starting pos not found");
}
static day22_facing day22_turn_left(day22_facing facing)
{
return (facing - 1 + 4) % 4;
}
static day22_facing day22_turn_right(day22_facing facing)
{
return (facing + 1) % 4;
}
static day22_facing day22_turn_180(day22_facing facing)
{
return (facing + 2) % 4;
}
static void day22_wrap_around(day22_map *map, vec2 *pos)
{
if (pos->x >= (i32)map->width) {
pos->x -= map->width;
} else if (pos->x < 0) {
pos->x += map->width;
} else if (pos->y >= (i32)map->height) {
pos->y -= map->height;
} else if (pos->y < 0) {
pos->y += map->height;
}
}
static bool day22_in_bounds(day22_map *map, i32 x, i32 y)
{
return (0 <= x && x < map->width) && (0 <= y && y < map->height);
}
static day22_tile day22_get_tile(day22_map *map, i32 x, i32 y)
{
if (!day22_in_bounds(map, x, y)) {
return TILE_VOID;
}
u32 idx = y * map->width + x;
return map->tiles[idx];
}
static bool day22_step(day22_map *map, vec2 *pos, day22_facing *dir)
{
vec2 next_pos = *pos;
vec2 *step = &g_day22_dirs[*dir];
next_pos.x += step->x;
next_pos.y += step->y;
day22_wrap_around(map, &next_pos);
while (day22_get_tile(map, next_pos.x, next_pos.y) == TILE_VOID) {
next_pos.x += step->x;
next_pos.y += step->y;
day22_wrap_around(map, &next_pos);
}
if (day22_get_tile(map, next_pos.x, next_pos.y) == TILE_EMPTY) {
pos->x = next_pos.x;
pos->y = next_pos.y;
return true;
} else {
return false;
}
}
static void day22_walk(void *map, vec2 *pos, day22_facing *dir, u32 amount, step_cb do_step)
{
for (int i = 0; i < amount; i++) {
if (!do_step(map, pos, dir)) {
break;
}
}
}
static void day22_follow_instructions(void *map, day22_instructions *insts, vec2 *pos, day22_facing *dir, step_cb do_step)
{
for (int i = 0; i < insts->count; i++) {
day22_instruction *inst = &insts->list[i];
switch(inst->op) {
case INST_WALK:
day22_walk(map, pos, dir, inst->amount, do_step);
break;
case INST_LEFT:
*dir = day22_turn_left(*dir);
break;
case INST_RIGHT:
*dir = day22_turn_right(*dir);
break;
}
}
}
static void day22_part1(void *p)
{
day22_data *data = (day22_data*)p;
day22_map *map = &data->map;
day22_instructions *insts = &data->instructions;
vec2 pos = day22_starting_pos(map);
day22_facing dir = FACING_RIGHT;
day22_follow_instructions(map, insts, &pos, &dir, (step_cb)day22_step);
u32 answer = (pos.y+1) * 1000 + (pos.x+1) * 4 + dir;
printf("%d\n", answer);
}
static day22_face day22_cube_map_face(day22_cube_map *cube_map, i32 x, i32 y)
{
x = x / cube_map->face_size * cube_map->face_size;
y = y / cube_map->face_size * cube_map->face_size;
for (int i = 0; i < ARRAY_LEN(cube_map->faces); i++) {
vec2 *face = &cube_map->faces[i];
if (face->x == x && face->y == y) {
return i;
}
}
return 9;
}
static void day22_print_cube_map_faces(day22_cube_map *cube_map)
{
day22_map *map = cube_map->map;
for (int y = 0; y < map->height; y++) {
for (int x = 0; x < map->width; x++) {
u32 idx = y * map->width + x;
if (map->tiles[idx] != TILE_VOID) {
printf("%d", day22_cube_map_face(cube_map, x, y));
} else {
printf(" ");
}
}
printf("\n");
}
}
static void day22_cube_map_init(day22_cube_map *cube_map, day22_map *map, vec2 *top_face)
{
cube_map->map = map;
u32 surface_area = 0;
for (int y = 0; y < map->height; y++) {
for (int x = 0; x < map->width; x++) {
u32 idx = y * map->width + x;
surface_area += (map->tiles[idx] != TILE_VOID);
}
}
u32 face_size = sqrt((float)surface_area/6);
assert(face_size != 0);
cube_map->face_size = face_size;
if (face_size == 4) { // Example case
cube_map->faces[FACE_TOP] = *top_face;
cube_map->faces[FACE_SOUTH] = cube_map->faces[FACE_TOP];
cube_map->faces[FACE_SOUTH].y += 4;
cube_map->faces[FACE_WEST] = cube_map->faces[FACE_SOUTH];
cube_map->faces[FACE_WEST].x -= face_size;
cube_map->faces[FACE_NORTH] = cube_map->faces[FACE_WEST];
cube_map->faces[FACE_NORTH].x -= face_size;
cube_map->faces[FACE_BOTTOM] = cube_map->faces[FACE_SOUTH];
cube_map->faces[FACE_BOTTOM].y += face_size;
cube_map->faces[FACE_EAST] = cube_map->faces[FACE_BOTTOM];
cube_map->faces[FACE_EAST].x += face_size;
} else { // User case
cube_map->faces[FACE_TOP] = *top_face;
cube_map->faces[FACE_EAST] = cube_map->faces[FACE_TOP];
cube_map->faces[FACE_EAST].x += face_size;
cube_map->faces[FACE_SOUTH] = cube_map->faces[FACE_TOP];
cube_map->faces[FACE_SOUTH].y += face_size;
cube_map->faces[FACE_BOTTOM] = cube_map->faces[FACE_SOUTH];
cube_map->faces[FACE_BOTTOM].y += face_size;
cube_map->faces[FACE_WEST] = cube_map->faces[FACE_BOTTOM];
cube_map->faces[FACE_WEST].x -= face_size;
cube_map->faces[FACE_NORTH] = cube_map->faces[FACE_WEST];
cube_map->faces[FACE_NORTH].y += face_size;
}
// TODO: To hell with this, too complicated for now. Stitching cube faces
// https://www.youtube.com/watch?v=qWgLdNFYDDo
/*
bool found_faces[6] = { 0 };
day22_face stack_faces[6];
day22_facing stack_incoming_facing[6];
vec2 stack_positions[6];
int stack_size;
static_assert(ARRAY_LEN(stack_faces) == ARRAY_LEN(stack_positions), "stack size is inconsistent");
stack_positions[0] = *top_face;
stack_faces[0] = FACE_TOP;
stack_incoming_facing[0] = FACING_DOWN;
found_faces[FACE_TOP] = true;
stack_size = 1;
while (stack_size > 0) {
vec2 pos = stack_positions[stack_size-1];
day22_face face = stack_faces[stack_size-1];
day22_facing initial_facing = stack_incoming_facing[stack_size-1];
stack_size--;
cube_map->faces[face] = pos;
day22_facing new_facings[] = {
initial_facing,
day22_turn_left(initial_facing),
day22_turn_right(initial_facing)
};
for (int i = 0; i < ARRAY_LEN(new_facings); i++) {
day22_facing new_facing = new_facings[i];
vec2 *dir = &g_day22_dirs[new_facing];
// if (face == FACE_NORTH) {
// dir = &g_day22_dirs[day22_turn_180(new_facing)];
// }
i32 x = pos.x + face_size * dir->x;
i32 y = pos.y + face_size * dir->y;
if (day22_in_bounds(map, x, y) && day22_get_tile(map, x, y) != TILE_VOID) {
// day22_facing rel_new_facing = (4 + initial_facing - new_facing) % 4;
day22_face new_face = g_day22_relface[face][new_facing];
printf("found face %s(%d) from %s(%d) by going %s(%d)\n", g_day22_face_str[new_face], new_face, g_day22_face_str[face], face, g_day22_facing_str[new_facing], new_facing);
if (found_faces[new_face]) {
printf("already found\n");
continue;
}
stack_positions[stack_size].x = x;
stack_positions[stack_size].y = y;
stack_faces[stack_size] = new_face;
stack_incoming_facing[stack_size] = new_facing;
found_faces[new_face] = true;
stack_size++;
assert(stack_size < ARRAY_LEN(stack_positions));
}
}
}
*/
}
static void day22_map_edge(day22_cube_map *cube_map, day22_face from_face, day22_facing from_facing, day22_face to_face, day22_facing to_facing, vec2 *pos)
{
// TODO:
}
static bool day22_cube_step(day22_cube_map *cube_map, vec2 *pos, day22_facing *dir)
{
day22_facing next_dir = *dir;
vec2 next_pos = *pos;
next_pos.x += g_day22_dirs[next_dir].x;
next_pos.y += g_day22_dirs[next_dir].y;
if (day22_get_tile(cube_map->map, next_pos.x, next_pos.y) == TILE_VOID) {
day22_face face = day22_cube_map_face(cube_map, pos->x, pos->y);
day22_face new_face = g_day22_relface[face][*dir];
next_dir = g_day22_relfacing[face][*dir];
day22_map_edge(cube_map, face, *dir, new_face, next_dir, &next_pos);
}
if (day22_get_tile(cube_map->map, next_pos.x, next_pos.y) == TILE_EMPTY) {
pos->x = next_pos.x;
pos->y = next_pos.y;
*dir = next_dir;
return true;
} else {
return false;
}
}
static void assert_face_table_is_correct()
{
for (int face = 0; face < ARRAY_LEN(g_day22_relface); face++) {
for (int facing = 0; facing < ARRAY_LEN(g_day22_relface[face]); facing++) {
day22_face new_face = g_day22_relface[face][facing];
day22_facing new_facing = g_day22_relfacing[face][facing];
int new_facing_180 = day22_turn_180(new_facing);
assert(face == g_day22_relface[new_face][new_facing_180]);
}
}
}
static void day22_part2(void *p)
{
assert_face_table_is_correct();
day22_data *data = (day22_data*)p;
day22_map *map = &data->map;
day22_instructions *insts = &data->instructions;
vec2 start = day22_starting_pos(map);
day22_cube_map cube_map = { 0 };
day22_cube_map_init(&cube_map, map, &start);
day22_print_cube_map_faces(&cube_map);
vec2 pos = start;
day22_facing dir = FACING_RIGHT;
// day22_follow_instructions(&cube_map, insts, &pos, &dir, (step_cb)day22_cube_step);
// u32 answer = (pos.y+1) * 1000 + (pos.x+1) * 4 + dir;
// printf("%d\n", answer);
}
ADD_SOLUTION(22, day22_parse, day22_part1, day22_part2);