1
0

complete Lab24

This commit is contained in:
Rokas Puzonas 2024-03-21 00:01:35 +02:00
parent 4021991ec3
commit f453a4d74f
7 changed files with 2782 additions and 0 deletions

Binary file not shown.

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,127 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 15,
"id": "ab7d7dbd-f2e0-4384-8c55-d4aeee74dd7c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The tensorboard extension is already loaded. To reload it, use:\n",
" %reload_ext tensorboard\n",
"WARNING:tensorflow:5 out of the last 5 calls to <function Model.make_predict_function.<locals>.predict_function at 0x7fe3e8248550> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n",
"1/1 [==============================] - 0s 33ms/step\n",
"[[0.03452728]\n",
" [0.9867295 ]\n",
" [0.9883936 ]\n",
" [0.01205833]]\n"
]
},
{
"data": {
"text/plain": [
"Reusing TensorBoard on port 6008 (pid 911540), started 0:22:54 ago. (Use '!kill 911540' to kill it.)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" <iframe id=\"tensorboard-frame-e941beefef1b33a0\" width=\"100%\" height=\"800\" frameborder=\"0\">\n",
" </iframe>\n",
" <script>\n",
" (function() {\n",
" const frame = document.getElementById(\"tensorboard-frame-e941beefef1b33a0\");\n",
" const url = new URL(\"/\", window.location);\n",
" const port = 6008;\n",
" if (port) {\n",
" url.port = port;\n",
" }\n",
" frame.src = url;\n",
" })();\n",
" </script>\n",
" "
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%load_ext tensorboard\n",
"\n",
"import tensorflow as tf\n",
"import numpy as np \n",
"import datetime, os\n",
"\n",
"tf.config.experimental.set_visible_devices([], \"GPU\") \n",
"\n",
"X = np.array([[0,0],[0,1],[1,0],[1,1]])\n",
"y = np.array([[0],[1],[1],[0]])\n",
" \n",
"model = tf.keras.models.Sequential([\n",
" tf.keras.layers.Dense(8, activation='relu', name='layers_dense_1'),\n",
" tf.keras.layers.Dense(8, activation='relu', name='layers_dense_2'),\n",
" tf.keras.layers.Dense(1, activation='sigmoid', name='layers_dense_3')\n",
"])\n",
" \n",
"loss_fn = tf.keras.losses.binary_crossentropy\n",
"\n",
"simple = True\n",
"\n",
"if simple == True:\n",
" model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n",
" \n",
" logdir = os.path.join(\"logs\", datetime.datetime.now().strftime(\"%Y%m%d-%H%M%S\"))\n",
" tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)\n",
" model.fit(X, y, batch_size=4, epochs=1000, verbose=0, callbacks = [tensorboard_callback])\n",
"else:\n",
" for i in range(100):\n",
" with tf.GradientTape() as tape:\n",
" # Forward pass.\n",
" predictions = model(X)\n",
" # Compute the loss value for this batch.\n",
" loss_value = loss_fn(y, predictions)\n",
"\n",
" # Get gradients of loss wrt the weights.\n",
" gradients = tape.gradient(loss_value, model.trainable_weights)\n",
" # Update the weights of the model.\n",
" optimizer.apply_gradients(zip(gradients, model.trainable_weights))\n",
"\n",
"print(model.predict(X))\n",
"\n",
"%tensorboard --logdir logs"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,30 @@
5.9,3,4.2,1.5,1
6.9,3.1,5.4,2.1,2
5.1,3.3,1.7,0.5,0
6,3.4,4.5,1.6,1
5.5,2.5,4,1.3,1
6.2,2.9,4.3,1.3,1
5.5,4.2,1.4,0.2,0
6.3,2.8,5.1,1.5,2
5.6,3,4.1,1.3,1
6.7,2.5,5.8,1.8,2
7.1,3,5.9,2.1,2
4.3,3,1.1,0.1,0
5.6,2.8,4.9,2,2
5.5,2.3,4,1.3,1
6,2.2,4,1,1
5.1,3.5,1.4,0.2,0
5.7,2.6,3.5,1,1
4.8,3.4,1.9,0.2,0
5.1,3.4,1.5,0.2,0
5.7,2.5,5,2,2
5.4,3.4,1.7,0.2,0
5.6,3,4.5,1.5,1
6.3,2.9,5.6,1.8,2
6.3,2.5,4.9,1.5,1
5.8,2.7,3.9,1.2,1
6.1,3,4.6,1.4,1
5.2,4.1,1.5,0.1,0
6.7,3.1,4.7,1.5,1
6.7,3.3,5.7,2.5,2
6.4,2.9,4.3,1.3,1
1 5.9 3 4.2 1.5 1
2 6.9 3.1 5.4 2.1 2
3 5.1 3.3 1.7 0.5 0
4 6 3.4 4.5 1.6 1
5 5.5 2.5 4 1.3 1
6 6.2 2.9 4.3 1.3 1
7 5.5 4.2 1.4 0.2 0
8 6.3 2.8 5.1 1.5 2
9 5.6 3 4.1 1.3 1
10 6.7 2.5 5.8 1.8 2
11 7.1 3 5.9 2.1 2
12 4.3 3 1.1 0.1 0
13 5.6 2.8 4.9 2 2
14 5.5 2.3 4 1.3 1
15 6 2.2 4 1 1
16 5.1 3.5 1.4 0.2 0
17 5.7 2.6 3.5 1 1
18 4.8 3.4 1.9 0.2 0
19 5.1 3.4 1.5 0.2 0
20 5.7 2.5 5 2 2
21 5.4 3.4 1.7 0.2 0
22 5.6 3 4.5 1.5 1
23 6.3 2.9 5.6 1.8 2
24 6.3 2.5 4.9 1.5 1
25 5.8 2.7 3.9 1.2 1
26 6.1 3 4.6 1.4 1
27 5.2 4.1 1.5 0.1 0
28 6.7 3.1 4.7 1.5 1
29 6.7 3.3 5.7 2.5 2
30 6.4 2.9 4.3 1.3 1

View File

@ -0,0 +1,120 @@
6.4,2.8,5.6,2.2,2
5,2.3,3.3,1,1
4.9,2.5,4.5,1.7,2
4.9,3.1,1.5,0.1,0
5.7,3.8,1.7,0.3,0
4.4,3.2,1.3,0.2,0
5.4,3.4,1.5,0.4,0
6.9,3.1,5.1,2.3,2
6.7,3.1,4.4,1.4,1
5.1,3.7,1.5,0.4,0
5.2,2.7,3.9,1.4,1
6.9,3.1,4.9,1.5,1
5.8,4,1.2,0.2,0
5.4,3.9,1.7,0.4,0
7.7,3.8,6.7,2.2,2
6.3,3.3,4.7,1.6,1
6.8,3.2,5.9,2.3,2
7.6,3,6.6,2.1,2
6.4,3.2,5.3,2.3,2
5.7,4.4,1.5,0.4,0
6.7,3.3,5.7,2.1,2
6.4,2.8,5.6,2.1,2
5.4,3.9,1.3,0.4,0
6.1,2.6,5.6,1.4,2
7.2,3,5.8,1.6,2
5.2,3.5,1.5,0.2,0
5.8,2.6,4,1.2,1
5.9,3,5.1,1.8,2
5.4,3,4.5,1.5,1
6.7,3,5,1.7,1
6.3,2.3,4.4,1.3,1
5.1,2.5,3,1.1,1
6.4,3.2,4.5,1.5,1
6.8,3,5.5,2.1,2
6.2,2.8,4.8,1.8,2
6.9,3.2,5.7,2.3,2
6.5,3.2,5.1,2,2
5.8,2.8,5.1,2.4,2
5.1,3.8,1.5,0.3,0
4.8,3,1.4,0.3,0
7.9,3.8,6.4,2,2
5.8,2.7,5.1,1.9,2
6.7,3,5.2,2.3,2
5.1,3.8,1.9,0.4,0
4.7,3.2,1.6,0.2,0
6,2.2,5,1.5,2
4.8,3.4,1.6,0.2,0
7.7,2.6,6.9,2.3,2
4.6,3.6,1,0.2,0
7.2,3.2,6,1.8,2
5,3.3,1.4,0.2,0
6.6,3,4.4,1.4,1
6.1,2.8,4,1.3,1
5,3.2,1.2,0.2,0
7,3.2,4.7,1.4,1
6,3,4.8,1.8,2
7.4,2.8,6.1,1.9,2
5.8,2.7,5.1,1.9,2
6.2,3.4,5.4,2.3,2
5,2,3.5,1,1
5.6,2.5,3.9,1.1,1
6.7,3.1,5.6,2.4,2
6.3,2.5,5,1.9,2
6.4,3.1,5.5,1.8,2
6.2,2.2,4.5,1.5,1
7.3,2.9,6.3,1.8,2
4.4,3,1.3,0.2,0
7.2,3.6,6.1,2.5,2
6.5,3,5.5,1.8,2
5,3.4,1.5,0.2,0
4.7,3.2,1.3,0.2,0
6.6,2.9,4.6,1.3,1
5.5,3.5,1.3,0.2,0
7.7,3,6.1,2.3,2
6.1,3,4.9,1.8,2
4.9,3.1,1.5,0.1,0
5.5,2.4,3.8,1.1,1
5.7,2.9,4.2,1.3,1
6,2.9,4.5,1.5,1
6.4,2.7,5.3,1.9,2
5.4,3.7,1.5,0.2,0
6.1,2.9,4.7,1.4,1
6.5,2.8,4.6,1.5,1
5.6,2.7,4.2,1.3,1
6.3,3.4,5.6,2.4,2
4.9,3.1,1.5,0.1,0
6.8,2.8,4.8,1.4,1
5.7,2.8,4.5,1.3,1
6,2.7,5.1,1.6,1
5,3.5,1.3,0.3,0
6.5,3,5.2,2,2
6.1,2.8,4.7,1.2,1
5.1,3.5,1.4,0.3,0
4.6,3.1,1.5,0.2,0
6.5,3,5.8,2.2,2
4.6,3.4,1.4,0.3,0
4.6,3.2,1.4,0.2,0
7.7,2.8,6.7,2,2
5.9,3.2,4.8,1.8,1
5.1,3.8,1.6,0.2,0
4.9,3,1.4,0.2,0
4.9,2.4,3.3,1,1
4.5,2.3,1.3,0.3,0
5.8,2.7,4.1,1,1
5,3.4,1.6,0.4,0
5.2,3.4,1.4,0.2,0
5.3,3.7,1.5,0.2,0
5,3.6,1.4,0.2,0
5.6,2.9,3.6,1.3,1
4.8,3.1,1.6,0.2,0
6.3,2.7,4.9,1.8,2
5.7,2.8,4.1,1.3,1
5,3,1.6,0.2,0
6.3,3.3,6,2.5,2
5,3.5,1.6,0.6,0
5.5,2.6,4.4,1.2,1
5.7,3,4.2,1.2,1
4.4,2.9,1.4,0.2,0
4.8,3,1.4,0.1,0
5.5,2.4,3.7,1,1
1 6.4 2.8 5.6 2.2 2
2 5 2.3 3.3 1 1
3 4.9 2.5 4.5 1.7 2
4 4.9 3.1 1.5 0.1 0
5 5.7 3.8 1.7 0.3 0
6 4.4 3.2 1.3 0.2 0
7 5.4 3.4 1.5 0.4 0
8 6.9 3.1 5.1 2.3 2
9 6.7 3.1 4.4 1.4 1
10 5.1 3.7 1.5 0.4 0
11 5.2 2.7 3.9 1.4 1
12 6.9 3.1 4.9 1.5 1
13 5.8 4 1.2 0.2 0
14 5.4 3.9 1.7 0.4 0
15 7.7 3.8 6.7 2.2 2
16 6.3 3.3 4.7 1.6 1
17 6.8 3.2 5.9 2.3 2
18 7.6 3 6.6 2.1 2
19 6.4 3.2 5.3 2.3 2
20 5.7 4.4 1.5 0.4 0
21 6.7 3.3 5.7 2.1 2
22 6.4 2.8 5.6 2.1 2
23 5.4 3.9 1.3 0.4 0
24 6.1 2.6 5.6 1.4 2
25 7.2 3 5.8 1.6 2
26 5.2 3.5 1.5 0.2 0
27 5.8 2.6 4 1.2 1
28 5.9 3 5.1 1.8 2
29 5.4 3 4.5 1.5 1
30 6.7 3 5 1.7 1
31 6.3 2.3 4.4 1.3 1
32 5.1 2.5 3 1.1 1
33 6.4 3.2 4.5 1.5 1
34 6.8 3 5.5 2.1 2
35 6.2 2.8 4.8 1.8 2
36 6.9 3.2 5.7 2.3 2
37 6.5 3.2 5.1 2 2
38 5.8 2.8 5.1 2.4 2
39 5.1 3.8 1.5 0.3 0
40 4.8 3 1.4 0.3 0
41 7.9 3.8 6.4 2 2
42 5.8 2.7 5.1 1.9 2
43 6.7 3 5.2 2.3 2
44 5.1 3.8 1.9 0.4 0
45 4.7 3.2 1.6 0.2 0
46 6 2.2 5 1.5 2
47 4.8 3.4 1.6 0.2 0
48 7.7 2.6 6.9 2.3 2
49 4.6 3.6 1 0.2 0
50 7.2 3.2 6 1.8 2
51 5 3.3 1.4 0.2 0
52 6.6 3 4.4 1.4 1
53 6.1 2.8 4 1.3 1
54 5 3.2 1.2 0.2 0
55 7 3.2 4.7 1.4 1
56 6 3 4.8 1.8 2
57 7.4 2.8 6.1 1.9 2
58 5.8 2.7 5.1 1.9 2
59 6.2 3.4 5.4 2.3 2
60 5 2 3.5 1 1
61 5.6 2.5 3.9 1.1 1
62 6.7 3.1 5.6 2.4 2
63 6.3 2.5 5 1.9 2
64 6.4 3.1 5.5 1.8 2
65 6.2 2.2 4.5 1.5 1
66 7.3 2.9 6.3 1.8 2
67 4.4 3 1.3 0.2 0
68 7.2 3.6 6.1 2.5 2
69 6.5 3 5.5 1.8 2
70 5 3.4 1.5 0.2 0
71 4.7 3.2 1.3 0.2 0
72 6.6 2.9 4.6 1.3 1
73 5.5 3.5 1.3 0.2 0
74 7.7 3 6.1 2.3 2
75 6.1 3 4.9 1.8 2
76 4.9 3.1 1.5 0.1 0
77 5.5 2.4 3.8 1.1 1
78 5.7 2.9 4.2 1.3 1
79 6 2.9 4.5 1.5 1
80 6.4 2.7 5.3 1.9 2
81 5.4 3.7 1.5 0.2 0
82 6.1 2.9 4.7 1.4 1
83 6.5 2.8 4.6 1.5 1
84 5.6 2.7 4.2 1.3 1
85 6.3 3.4 5.6 2.4 2
86 4.9 3.1 1.5 0.1 0
87 6.8 2.8 4.8 1.4 1
88 5.7 2.8 4.5 1.3 1
89 6 2.7 5.1 1.6 1
90 5 3.5 1.3 0.3 0
91 6.5 3 5.2 2 2
92 6.1 2.8 4.7 1.2 1
93 5.1 3.5 1.4 0.3 0
94 4.6 3.1 1.5 0.2 0
95 6.5 3 5.8 2.2 2
96 4.6 3.4 1.4 0.3 0
97 4.6 3.2 1.4 0.2 0
98 7.7 2.8 6.7 2 2
99 5.9 3.2 4.8 1.8 1
100 5.1 3.8 1.6 0.2 0
101 4.9 3 1.4 0.2 0
102 4.9 2.4 3.3 1 1
103 4.5 2.3 1.3 0.3 0
104 5.8 2.7 4.1 1 1
105 5 3.4 1.6 0.4 0
106 5.2 3.4 1.4 0.2 0
107 5.3 3.7 1.5 0.2 0
108 5 3.6 1.4 0.2 0
109 5.6 2.9 3.6 1.3 1
110 4.8 3.1 1.6 0.2 0
111 6.3 2.7 4.9 1.8 2
112 5.7 2.8 4.1 1.3 1
113 5 3 1.6 0.2 0
114 6.3 3.3 6 2.5 2
115 5 3.5 1.6 0.6 0
116 5.5 2.6 4.4 1.2 1
117 5.7 3 4.2 1.2 1
118 4.4 2.9 1.4 0.2 0
119 4.8 3 1.4 0.1 0
120 5.5 2.4 3.7 1 1

1433
Lab2/main.ipynb Normal file

File diff suppressed because one or more lines are too long